
Khoon Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3586043/publications.pdf Version: 2024-02-01

КНООМЦИМ

#	Article	IF	CITATIONS
1	Overcoming functional challenges in autologous and engineered fat grafting trends. Trends in Biotechnology, 2022, 40, 77-92.	9.3	14
2	Injectionâ€Free Delivery of MSCâ€Derived Extracellular Vesicles for Myocardial Infarction Therapeutics. Advanced Healthcare Materials, 2022, 11, e2100312.	7.6	34
3	Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Bone, 2022, 154, 116198.	2.9	25
4	Facile Bioprinting Process for Fabricating Sizeâ€Controllable Functional Microtissues Using Lightâ€Activated Decellularized Extracellular Matrixâ€Based Bioinks. Advanced Materials Technologies, 2022, 7, .	5.8	18
5	Development and Characterization of Gelatinâ€Norbornene Bioink to Understand the Interplay between Physical Architecture and Microâ€Capillary Formation in Biofabricated Vascularized Constructs. Advanced Healthcare Materials, 2022, 11, e2101873.	7.6	28
6	Next Evolution in Organâ€Scale Biofabrication: Bioresin Design for Rapid Highâ€Resolution Vat Polymerization. Advanced Materials, 2022, 34, e2107759.	21.0	30
7	Novel Growth Factor Combination for Improving Rotator Cuff Repair: A Rat In Vivo Study. American Journal of Sports Medicine, 2022, 50, 1044-1053.	4.2	5
8	The advances in nanomedicine for bone and cartilage repair. Journal of Nanobiotechnology, 2022, 20, 141.	9.1	43
9	Hybrid fabrication of photo-clickable vascular hydrogels with additive manufactured titanium implants for enhanced osseointegration and vascularized bone formation. Biofabrication, 2022, 14, 034103.	7.1	9
10	3D bioassembly of cell-instructive chondrogenic and osteogenic hydrogel microspheres containing allogeneic stem cells for hybrid biofabrication of osteochondral constructs. Biofabrication, 2022, 14, 034101.	7.1	16
11	GelMA Hydrogel Reinforced with 3D Printed PECT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair. Journal of Functional Biomaterials, 2022, 13, 41.	4.4	5
12	The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. , 2022, 13, 491.		17
13	Impact of COVID-19 on health research in New Zealand: a case study of a research-intensive campus. Journal of the Royal Society of New Zealand, 2021, 51, S75-S85.	1.9	5
14	Biological function following radical photo-polymerization of biomedical polymers and surrounding tissues: Design considerations and cellular risk factors. Applied Physics Reviews, 2021, 8, 011301.	11.3	13
15	Lightâ€Activated Decellularized Extracellular Matrixâ€Based Bioinks for Volumetric Tissue Analogs at the Centimeter Scale. Advanced Functional Materials, 2021, 31, 2011252.	14.9	64
16	Effect of Photoinitiator on Precursory Stability and Curing Depth of Thiol-Ene Clickable Gelatin. Polymers, 2021, 13, 1877.	4.5	21
17	A Smartphoneâ€Enabled Portable Digital Light Processing 3D Printer. Advanced Materials, 2021, 33, e2102153.	21.0	45
18	Allogeneic Mesenchymal Stromal Cells for Cartilage Regeneration: A Review of in Vitro Evaluation, Clinical Experience, and Translational Opportunities. Stem Cells Translational Medicine, 2021, 10, 1500-1515.	3.3	17

Кноол Lim

#	Article	IF	CITATIONS
19	Strategies for inclusion of growth factors into 3D printed bone grafts. Essays in Biochemistry, 2021, 65, 569-585.	4.7	9
20	Editorial: 3D Bioprinting of Vascularized Tissues for In Vitro and In Vivo Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 754124.	4.1	2
21	Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomaterialia, 2021, 132, 188-216.	8.3	21
22	A Smartphoneâ€Enabled Portable Digital Light Processing 3D Printer (Adv. Mater. 35/2021). Advanced Materials, 2021, 33, 2170271.	21.0	1
23	MI192 induced epigenetic reprogramming enhances the therapeutic efficacy of human bone marrows stromal cells for bone regeneration. Bone, 2021, 153, 116138.	2.9	12
24	Probing Multicellular Tissue Fusion of Cocultured Spheroids—A 3Dâ€Bioassembly Model. Advanced Science, 2021, 8, e2103320.	11.2	21
25	High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Materials Today Bio, 2021, 12, 100162.	5.5	38
26	Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting, 2020, 18, e00073.	5.8	60
27	Spontaneous Spinal Epidural Haematomas. , 2020, , .		0
28	Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for <i>in situ</i> tissue engineering. Biomaterials Science, 2020, 8, 7093-7105.	5.4	13
29	Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomaterials Science, 2020, 8, 5005-5019.	5.4	27
30	Small but significant: Insights and new perspectives of exosomes in cardiovascular disease. Journal of Cellular and Molecular Medicine, 2020, 24, 8291-8303.	3.6	29
31	Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 105, 103671.	3.1	97
32	Combined Infection Control and Enhanced Osteogenic Differentiation Capacity on Additive Manufactured Tiâ€6Alâ€4V are Mediated via Titania Nanotube Delivery of Novel Biofilm Inhibitors. Advanced Materials Interfaces, 2020, 7, 1901963.	3.7	19
33	Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity. Advanced Healthcare Materials, 2020, 9, e1901667.	7.6	96
34	Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogelâ€Based Bioinks. Advanced Healthcare Materials, 2020, 9, e1901648.	7.6	190
35	Oneâ€Step Photoactivation of a Dualâ€Functionalized Bioink as Cell Carrier and Cartilageâ€Binding Glue for Chondral Regeneration. Advanced Healthcare Materials, 2020, 9, e1901792.	7.6	56
36	Stepwise Control of Crosslinking in a Oneâ€Pot System for Bioprinting of Lowâ€Density Bioinks. Advanced Healthcare Materials, 2020, 9, e1901544.	7.6	37

Кноол Lim

#	Article	IF	CITATIONS
37	Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chemical Reviews, 2020, 120, 10662-10694.	47.7	222
38	A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues. Advanced Healthcare Materials, 2019, 8, e1900979.	7.6	69
39	Does Tranexamic Acid Reduce Knee Swelling and Improve Early Function Following Arthroscopic Meniscectomy? A Double-Blind Randomized Controlled Trial. Orthopaedic Journal of Sports Medicine, 2019, 7, 232596711986612.	1.7	30
40	New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends in Biotechnology, 2019, 37, 1327-1343.	9.3	30
41	Microchannels in Development, Survival, and Vascularisation of Tissue Analogues for Regenerative Medicine. Trends in Biotechnology, 2019, 37, 1189-1201.	9.3	58
42	Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication, 2019, 11, 035027.	7.1	142
43	Visible Light Crossâ€Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth. Macromolecular Bioscience, 2019, 19, e1900098.	4.1	127
44	Spontaneous spinal epidural haematomas in children. European Spine Journal, 2019, 28, 2229-2236.	2.2	7
45	Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications. Acta Biomaterialia, 2019, 85, 117-130.	8.3	20
46	Biofilm Inhibition via Delivery of Novel Methylthioadenosine Nucleosidase Inhibitors from PVA-Tyramine Hydrogels while Supporting Mesenchymal Stromal Cell Viability. ACS Biomaterials Science and Engineering, 2019, 5, 748-758.	5.2	7
47	Anatomical Variations of the Saphenous Nerve in the Adductor Canal. Journal of Anesthesiology and Clinical Science, 2019, 8, 2.	0.6	1
48	Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication, 2018, 10, 034101.	7.1	216
49	Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication, 2018, 10, 024103.	7.1	137
50	Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1078, 245-269.	1.6	22
51	Biosynthetic Hydrogels for Cell Encapsulation. Springer Series in Biomaterials Science and Engineering, 2018, , 1-29.	1.0	3
52	Is tranexamic acid toxic to articular cartilage when administered topically?. Bone and Joint Journal, 2018, 100-B, 404-412.	4.4	65
53	Engineering of a complex bone tissue model with endothelialised channels and capillary-like networks. , 2018, 35, 335-349.		40
54	A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models. Lab on A Chip, 2018, 18, 2757-2775.	6.0	47

Кноол Lim

1

#	Article	IF	CITATIONS
55	Covalent Incorporation of Heparin Improves Chondrogenesis in Photocurable Gelatinâ€Methacryloyl Hydrogels. Macromolecular Bioscience, 2017, 17, 1700158.	4.1	63
56	Thiol–Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies. Advanced Materials, 2017, 29, 1703404.	21.0	248
57	5.14 Biofabrication in Tissue Engineering â [~] †. , 2017, , 236-266.		26
58	New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks. ACS Biomaterials Science and Engineering, 2016, 2, 1752-1762.	5.2	259
59	A comparative study of enzyme initiators for crosslinking phenol-functionalized hydrogels for cell encapsulation. Biomaterials Research, 2016, 20, 30.	6.9	39
60	Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)–Tyramine Hydrogels. Macromolecular Bioscience, 2015, 15, 1423-1432.	4.1	43
61	Understanding and tailoring the degradation of PVAâ€ŧyramine hydrogels. Journal of Applied Polymer Science, 2015, 132, .	2.6	15
62	Producing 3D neuronal networks in hydrogels for living bionic device interfaces. , 2015, 2015, 2600-3.		11
63	Conductive hydrogels with tailored bioactivity for implantable electrode coatings. Acta Biomaterialia, 2014, 10, 1216-1226.	8.3	102
64	Incorporation of 5â€Hydroxyindazole into the Selfâ€Polymerization of Dopamine for Novel Polymer Synthesis. Macromolecular Rapid Communications, 2014, 35, 291-297.	3.9	20
65	Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials, 2013, 34, 7097-7105.	11.4	124
66	Living electrodes: Tissue engineering the neural interface. , 2013, 2013, 6957-60.		25
67	The Influence of Silkworm Species on Cellular Interactions with Novel PVA/Silk Sericin Hydrogels. Macromolecular Bioscience, 2012, 12, 322-332.	4.1	54

68 Stem Cells for Bone Regeneration: Role of Trophic Factors. , 0, , .