
Eduardo Guzman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3585574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer–surfactant systems in bulk and at fluid interfaces. Advances in Colloid and Interface Science, 2016, 233, 38-64.	14.7	175

 $_{2}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ Salt-induced changes in the growth of polyelectrolyte layers of polyelectrol

3	Particle laden fluid interfaces: Dynamics and interfacial rheology. Advances in Colloid and Interface Science, 2014, 206, 303-319.	14.7	164
4	Wettability of silicananoparticle–surfactant nanocomposite interfacial layers. Soft Matter, 2012, 8, 837-843.	2.7	142
5	Contact angle of micro- and nanoparticles at fluid interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 355-367.	7.4	126
6	Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Advances in Colloid and Interface Science, 2017, 249, 290-307.	14.7	120
7	Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Advances in Colloid and Interface Science, 2015, 222, 461-487.	14.7	110
8	Effect of Hydrophilic and Hydrophobic Nanoparticles on the Surface Pressure Response of DPPC Monolayers. Journal of Physical Chemistry C, 2011, 115, 21715-21722.	3.1	105
9	A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Advances in Colloid and Interface Science, 2020, 282, 102197.	14.7	100
10	DPPC–DOPC Langmuir monolayers modified by hydrophilic silica nanoparticles: Phase behaviour, structure and rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 174-183.	4.7	85
11	Adsorption Kinetics and Mechanical Properties of Ultrathin Polyelectrolyte Multilayers: Liquid-Supported versus Solid-Supported Films. Journal of Physical Chemistry B, 2009, 113, 7128-7137.	2.6	81
12	Mixed DPPC–cholesterol Langmuir monolayers in presence of hydrophilic silica nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013, 105, 284-293.	5.0	79
13	pH-Induced Changes in the Fabrication of Multilayers of Poly(acrylic acid) and Chitosan: Fabrication, Properties, and Tests as a Drug Storage and Delivery System. Langmuir, 2011, 27, 6836-6845.	3.5	76
14	Influence of silica nanoparticles on phase behavior and structural properties of DPPC—Palmitic acid Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 280-287.	4.7	71
15	Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Advances in Colloid and Interface Science, 2021, 287, 102330.	14.7	65
16	Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics, 2021, 8, 114.	3.3	63
17	Biofouling control by superhydrophobic surfaces in shallow euphotic seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 369-375.	4.7	62
18	Influence of silica nanoparticles on dilational rheology of DPPC–palmitic acid Langmuir monolayers. Soft Matter, 2012, 8, 3938.	2.7	61

#	Article	IF	CITATIONS
19	Growth of Polyelectrolyte Layers Formed by Poly(4-styrenesulfonate sodium salt) and Two Different Polycations: New Insights from Study of Adsorption Kinetics. Journal of Physical Chemistry C, 2012, 116, 15474-15483.	3.1	59
20	Emulsions stabilized by the interaction of silica nanoparticles and palmitic acid at the water–hexane interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 333-341.	4.7	58
21	Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Advances in Condensed Matter Physics, 2015, 2015, 1-17.	1.1	55
22	Effect of the molecular structure on the adsorption of conditioning polyelectrolytes on solid substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 209-218.	4.7	53
23	Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ, 2017, 5, e3171.	2.0	51
24	Adsorption of Conditioning Polymers on Solid Substrates with Different Charge Density. ACS Applied Materials & Interfaces, 2011, 3, 3181-3188.	8.0	50
25	Effect of molecular structure of eco-friendly glycolipid biosurfactants on the adsorption of hair-care conditioning polymers. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110578.	5.0	48
26	Evidence of the influence of adsorption kinetics on the internal reorganization of polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 274-281.	4.7	47
27	Influence of the percentage of acetylation on the assembly of LbL multilayers of poly(acrylic acid) and chitosan. Physical Chemistry Chemical Physics, 2011, 13, 18200.	2.8	45
28	Properties and structure of interfacial layers formed by hydrophilic silica dispersions and palmitic acid. Physical Chemistry Chemical Physics, 2012, 14, 607-615.	2.8	45
29	2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces. Scientific Reports, 2015, 5, 17930.	3.3	45
30	Towards understanding the behavior of polyelectrolyte–surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Physical Chemistry Chemical Physics, 2018, 20, 1395-1407.	2.8	45
31	Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Current Opinion in Colloid and Interface Science, 2020, 48, 91-108.	7.4	45
32	Lung surfactant-particles at fluid interfaces for toxicity assessments. Current Opinion in Colloid and Interface Science, 2019, 39, 24-39.	7.4	44
33	Interaction of Carbon Black Particles and Dipalmitoylphosphatidylcholine at the Water/Air Interface: Thermodynamics and Rheology. Journal of Physical Chemistry C, 2015, 119, 26937-26947.	3.1	43
34	Study of the Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. Journal of Physical Chemistry C, 2018, 122, 4419-4427.	3.1	42
35	Interfacial Properties of Mixed DPPC–Hydrophobic Fumed Silica Nanoparticle Layers. Journal of Physical Chemistry C, 2015, 119, 21024-21034.	3.1	41
36	Polyelectrolyte Multilayers Containing Triblock Copolymers of Different Charge Ratio. Langmuir, 2010, 26, 11494-11502.	3.5	40

Eduardo Guzman

#	Article	IF	CITATIONS
37	Shear rheology of fluid interfaces: Closing the gap between macro- and micro-rheology. Current Opinion in Colloid and Interface Science, 2018, 37, 33-48.	7.4	40
38	Two-Dimensional DPPC Based Emulsion-like Structures Stabilized by Silica Nanoparticles. Langmuir, 2014, 30, 11504-11512.	3.5	39
39	Tuning Interfacial Properties and Processes by Controlling the Rheology and Structure of Poly(<i>N</i> -isopropylacrylamide) Particles at Air/Water Interfaces. Langmuir, 2018, 34, 7067-7076.	3.5	39
40	Physico-chemical foundations of particle-laden fluid interfaces. European Physical Journal E, 2018, 41, 97.	1.6	37
41	Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture. Colloids and Surfaces B: Biointerfaces, 2015, 136, 971-980.	5.0	36
42	Adsorption of poly(diallyldimethylammonium chloride)—sodium methyl-cocoyl-taurate complexes onto solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 150-157.	4.7	36
43	Salt effects on the air/solution interfacial properties of PEO-containing copolymers: Equilibrium, adsorption kinetics and surface rheological behavior. Journal of Colloid and Interface Science, 2013, 400, 49-58.	9.4	35
44	Formation of surfactant free microemulsions in the ternary system water/eugenol/ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 133-140.	4.7	35
45	Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers, 2021, 13, 1221.	4.5	34
46	Equilibration of a Polycation–Anionic Surfactant Mixture at the Water/Vapor Interface. Langmuir, 2018, 34, 7455-7464.	3.5	33
47	Effect of a natural amphoteric surfactant in the bulk and adsorption behavior of polyelectrolyte-surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124178.	4.7	32
48	Deposition of Synthetic and Bio-Based Polycations onto Negatively Charged Solid Surfaces: Effect of the Polymer Cationicity, Ionic Strength, and the Addition of an Anionic Surfactant. Colloids and Interfaces, 2020, 4, 33.	2.1	32
49	Effect of the Incorporation of Nanosized Titanium Dioxide on the Interfacial Properties of 1,2-Dipalmitoyl- <i>sn</i> -glycerol-3-phosphocholine Langmuir Monolayers. Langmuir, 2017, 33, 10715-10725.	3.5	31
50	A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620.	14.7	31
51	Thermo- and soluto-capillarity: Passive and active drops. Advances in Colloid and Interface Science, 2017, 247, 52-80.	14.7	28
52	Two Different Scenarios for the Equilibration of Polycation—Anionic Solutions at Water–Vapor Interfaces. Coatings, 2019, 9, 438.	2.6	28
53	Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Advances in Colloid and Interface Science, 2020, 282, 102203.	14.7	27
54	Physicochemical Aspects of the Performance of Hair-Conditioning Formulations. Cosmetics, 2020, 7, 26.	3.3	27

Eduardo Guzman

#	Article	IF	CITATIONS
55	Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers. Physical Chemistry Chemical Physics, 2011, 13, 16416.	2.8	26
56	Nanoparticle laden interfacial layers and application to foams and solid foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438, 132-140.	4.7	26
57	Surfactant-Like Behavior for the Adsorption of Mixtures of a Polycation and Two Different Zwitterionic Surfactants at the Water/Vapor Interface. Molecules, 2019, 24, 3442.	3.8	25
58	Fluid to soft-glass transition in a quasi-2D system: thermodynamic and rheological evidences for a Langmuir monolayer. Physical Chemistry Chemical Physics, 2011, 13, 9534.	2.8	24
59	Oil-In-Water Microemulsions for Thymol Solubilization. Colloids and Interfaces, 2019, 3, 64.	2.1	23
60	Dielectric and dynamic-mechanical study of the mobility of poly(t-butylacrylate) chains in diblock copolymers: Polystyrene-b-poly(t-butylacrylate). Polymer, 2008, 49, 5650-5658.	3.8	22
61	Hydrophobic Silica Nanoparticles Induce Gel Phases in Phospholipid Monolayers. Langmuir, 2016, 32, 4868-4876.	3.5	21
62	Self-Consistent Mean Field Calculations of Polyelectrolyte-Surfactant Mixtures in Solution and upon Adsorption onto Negatively Charged Surfaces. Polymers, 2020, 12, 624.	4.5	21
63	Particle-laden fluid/fluid interfaces: physico-chemical foundations. Journal of Physics Condensed Matter, 2021, 33, 333001.	1.8	21
64	3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Beilstein Journal of Nanotechnology, 2016, 7, 197-208.	2.8	19
65	Interaction of Particles with Langmuir Monolayers of 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphocholine: A Matter of Chemistry?. Coatings, 2020, 10, 469.	2.6	19
66	Pickering Emulsions: A Novel Tool for Cosmetic Formulators. Cosmetics, 2022, 9, 68.	3.3	19
67	Physico-chemical study of polymer mixtures formed by a polycation and a zwitterionic copolymer in aqueous solution and upon adsorption onto negatively charged surfaces. Polymer, 2021, 217, 123442.	3.8	18
68	Surfactant induced complex formation and their effects on the interfacial properties of seawater. Colloids and Surfaces B: Biointerfaces, 2014, 123, 701-709.	5.0	17
69	Preparation and Application in Drug Storage and Delivery of Agarose Nanoparticles. International Journal of Polymer Science, 2018, 2018, 1-9.	2.7	17
70	Fabrication of Robust Capsules by Sequential Assembly of Polyelectrolytes onto Charged Liposomes. Langmuir, 2021, 37, 6189-6200.	3.5	17
71	Environmentally friendly platforms for encapsulation of an essential oil: Fabrication, characterization and application in pests control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 473-481.	4.7	16
72	Colloids at Fluid Interfaces. Processes, 2019, 7, 942.	2.8	16

5

EDUARDO GUZMAN

#	Article	IF	CITATIONS
73	On the autonomous motion of active drops or bubbles. Journal of Colloid and Interface Science, 2018, 527, 180-186.	9.4	14
74	Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer–surfactant interactions. Physical Chemistry Chemical Physics, 2020, 22, 23360-23373.	2.8	14
75	Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers, 2022, 14, 479.	4.5	14
76	Carbon Soot–Ionic Surfactant Mixed Layers at Water/Air Interfaces. Journal of Nanoscience and Nanotechnology, 2015, 15, 3618-3625.	0.9	13
77	Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius. Molecules, 2020, 25, 2290.	3.8	13
78	Influence of Carbon Nanosheets on the Behavior of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Processes, 2020, 8, 94.	2.8	13
79	Development of an Environmentally Friendly Larvicidal Formulation Based on Essential Oil Compound Blend to Control <i>Aedes aegypti</i> Larvae: Correlations between Physicochemical Properties and Insecticidal Activity. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	12
80	Comment on "Formation of polyelectrolyte multilayers: ionic strengths and growth regimes―by K. Tang and A. M. Besseling, Soft Matter, 2016, 12 , 1032. Soft Matter, 2016, 12, 8460-8463.	2.7	10
81	Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125513.	4.7	10
82	Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Colloids and Interfaces, 2021, 5, 12.	2.1	9
83	Study of the Dilution-Induced Deposition of Concentrated Mixtures of Polyelectrolytes and Surfactants. Polymers, 2022, 14, 1335.	4.5	9
84	Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. Energies, 2022, 15, 3399.	3.1	9
85	Oil in Water Nanoemulsions Loaded with Tebuconazole for Populus Wood Protection against White- and Brown-Rot Fungi. Forests, 2021, 12, 1234.	2.1	8
86	Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films. Environmental Science & Technology, 2022, 56, 7308-7318.	10.0	8
87	Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid. Colloids and Interfaces, 2020, 4, 47.	2.1	7
88	Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. Colloids and Interfaces, 2021, 5, 30.	2.1	7
89	Nanoemulsions for the Encapsulation of Hydrophobic Actives. Cosmetics, 2021, 8, 45.	3.3	7
90	Pattern Formation upon Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. International Journal of Molecular Sciences, 2021, 22, 7953.	4.1	7

EDUARDO GUZMAN

#	Article	IF	CITATIONS
91	Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. Coatings, 2022, 12, 277.	2.6	7
92	Evaluation of the impact of carbonaceous particles in the mechanical performance of lipid Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127974.	4.7	6
93	Soft Colloidal Particles at Fluid Interfaces. Polymers, 2022, 14, 1133.	4.5	6
94	Stratified Interpolyelectrolyte Complexes: Fabrication, Structure and Properties. Engineering Materials, 2014, , 299-347.	0.6	4
95	Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. Colloids and Interfaces, 2021, 5, 50.	2.1	4
96	Effects of Oil Phase on the Inversion of Pickering Emulsions Stabilized by Palmitic Acid Decorated Silica Nanoparticles. Colloids and Interfaces, 2022, 6, 27.	2.1	4
97	Current Perspective on the Study of Liquid–Fluid Interfaces: From Fundamentals to Innovative Applications. Coatings, 2022, 12, 841.	2.6	3
98	Fluid Interfaces. Coatings, 2020, 10, 1000.	2.6	2
99	In honor to Ramón G. Rubio on the occasion of his 65th birthday. Advances in Colloid and Interface Science, 2020, 282, 102202.	14.7	0
100	Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects. Springer Proceedings in Physics, 2019, , 255-276.	0.2	0