Jian-chu Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3585571/publications.pdf

Version: 2024-02-01

		18436	14156
302	19,999	62	128
papers	citations	h-index	g-index
200	200	200	17000
309	309	309	17930
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The legacy effects of rubber defoliation period on the refoliation phenology, leaf disease, and latex yield. Plant Diversity, 2023, 45, 98-103.	1.8	5
2	Adaptation to climate change: ethnic groups in Southwest China. Environmental Hazards, 2022, 21, 117-136.	1.4	5
3	Maize diversity for fall armyworm resistance in a warming world. Crop Science, 2022, 62, 1-19.	0.8	7
4	Amla (Phyllanthus emblica) fresh fruit as new feed source to enhance ruminal fermentation and milk production in lactating dairy cows. Animal Feed Science and Technology, 2022, 283, 115160.	1.1	12
5	Morphology and multi-gene phylogeny reveal a new fungal genus and species from Hevea brasiliensis latex in Yunnan, China. Phytotaxa, 2022, 530, 65-76.	0.1	1
6	Taxonomy and phylogeny of the novel rhytidhysteron-like collections in the Greater Mekong Subregion. MycoKeys, 2022, 86, 65-85.	0.8	8
7	Morpho-Molecular Characterization of Five Novel Taxa in Parabambusicolaceae (Massarineae,) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 10
8	Taxonomy and Phylogeny of Novel and Extant Taxa in Pleosporales Associated with Mangifera indica from Yunnan, China (Series I). Journal of Fungi (Basel, Switzerland), 2022, 8, 152.	1.5	12
9	Fresh Phyllanthus emblica (Amla) Fruit Supplementation Enhances Milk Fatty Acid Profiles and the Antioxidant Capacities of Milk and Blood in Dairy Cows. Antioxidants, 2022, 11, 485.	2.2	7
10	Three New Species, Two New Records and Four New Collections of Tubeufiaceae from Thailand and China. Journal of Fungi (Basel, Switzerland), 2022, 8, 206.	1.5	6
11	Taxonomic Reappraisal of Periconiaceae with the Description of Three New Periconia Species from China. Journal of Fungi (Basel, Switzerland), 2022, 8, 243.	1.5	6
12	Comparative Transcriptomics Analysis of Roots and Leaves under Cd Stress in Calotropis gigantea L International Journal of Molecular Sciences, 2022, 23, 3329.	1.8	16
13	The case of the missing mushroom: a novel bioluminescent species discovered within Favolaschia in southwestern China. Phytotaxa, 2022, 539, 244-256.	0.1	3
14	Comprehensive Review of Fungi on Coffee. Pathogens, 2022, 11, 411.	1.2	11
15	Insight into the Taxonomic Resolution of the Pleosporalean Species Associated with Dead Woody Litter in Natural Forests from Yunnan, China. Journal of Fungi (Basel, Switzerland), 2022, 8, 375.	1.5	9
16	Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil. Chemosphere, 2022, 296, 134045.	4.2	18
17	Increasing collaboration between China and India in the environmental sciences to foster global sustainability. Ambio, 2022, 51, 1474-1484.	2.8	7
18	Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China. Diversity, 2022, 14, 287.	0.7	6

#	Article	IF	Citations
19	Ectomycorrhizal Mushrooms as a Natural Bio-Indicator for Assessment of Heavy Metal Pollution. Agronomy, 2022, 12, 1041.	1.3	7
20	Metabolomic and transcriptomic analyses reveal new insights into the role of abscisic acid in modulating mango fruit ripening. Horticulture Research, 2022, 9, .	2.9	12
21	The Grain-for-Green project offsets warming-induced soil organic carbon loss and increases soil carbon stock in Chinese Loess Plateau. Science of the Total Environment, 2022, 837, 155469.	3.9	19
22	Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nature Communications, 2022, 13, 2681.	5.8	37
23	Bambusicolous Fungi in Pleosporales: Introducing Four Novel Taxa and a New Habitat Record for Anastomitrabeculia didymospora. Journal of Fungi (Basel, Switzerland), 2022, 8, 630.	1.5	6
24	Quantitative Succinyl-Proteome Profiling of Turnip (Brassica rapa var. rapa) in Response to Cadmium Stress. Cells, 2022, 11, 1947.	1.8	4
25	Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Scientific Data, 2022, 9, .	2.4	151
26	Mapping tree species distribution in support of China's integrated tree-livestock-crop system. Circular Agricultural Systems, 2021, 1, 1-11.	0.5	1
27	Impact of land use and land cover changes on carbon storage in rubber dominated tropical Xishuangbanna, South West China. Ecosystem Health and Sustainability, 2021, 7, .	1.5	15
28	An Overview of the Problems and Prospects for Circular Agriculture in Sustainable Food Systems in the Anthropocene. Circular Agricultural Systems, 2021, 1, 1-11.	0.5	11
29	Mushroom as a means of sustainable rural development in the Chin State, Myanmar. Circular Agricultural Systems, 2021, $1,1$ -6.	0.5	4
30	<p>Introduction of Neolophiotrema xiaokongense gen. et sp. nov. to the poorly represented Anteagloniaceae (Pleosporales,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50</p>	29071Td (ℂ)othideomyce
31	Bioluminescent fungus Roridomyces viridiluminus sp. nov. and the first Chinese record of the genus Roridomyces, from Southwestern China . Phytotaxa, 2021, 487, 233-250.	0.1	4
32	Reviewing the world's edible mushroom species: A new evidenceâ€based classification system. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1982-2014.	5.9	89
33	Morpho-Phylo Taxonomy of Novel Dothideomycetous Fungi Associated With Dead Woody Twigs in Yunnan Province, China. Frontiers in Microbiology, 2021, 12, 654683.	1.5	21
34	Five Steps to Inject Transformative Change into the Post-2020 Global Biodiversity Framework. BioScience, 2021, 71, 637-646.	2.2	15
35	Composition of woody plant communities drives macrofungal community composition in three climatic regions. Journal of Vegetation Science, 2021, 32, e13001.	1.1	4
36	Insight into the Systematics of Microfungi Colonizing Dead Woody Twigs of Dodonaea viscosa in Honghe (China). Journal of Fungi (Basel, Switzerland), 2021, 7, 180.	1.5	25

#	Article	IF	CITATIONS
37	Climate-Fungal Pathogen Modeling Predicts Loss of Up to One-Third of Tea Growing Areas. Frontiers in Cellular and Infection Microbiology, 2021, 11, 610567.	1.8	13
38	Mucoralean Fungi in Thailand: Novel Species of Absidia from Tropical Forest Soil. Cryptogamie, Mycologie, 2021, 42, .	0.2	6
39	Volatile Constituents of Endophytic Fungi Isolated from Aquilaria sinensis with Descriptions of Two New Species of Nemania. Life, 2021, 11, 363.	1.1	11
40	The powdery mildew disease of rubber (Oidium heveae) is jointly controlled by the winter temperature and host phenology. International Journal of Biometeorology, 2021, 65, 1707-1718.	1.3	7
41	Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota). Life, 2021, 11, 486.	1.1	10
42	Mountain futures: pursuing innovative adaptations in coupled social–ecological systems. Frontiers in Ecology and the Environment, 2021, 19, 342-348.	1.9	18
43	Multi-Gene Phylogeny and Morphology Reveal Haplohelminthosporium gen. nov. and Helminthosporiella gen. nov. Associated with Palms in Thailand and A Checklist for Helminthosporium Reported Worldwide. Life, 2021, 11, 454.	1.1	5
44	<p>Amphibambusa hongheensis sp. nov., a novel bambusicolous ascomycete from Yunnan, China</p> . Phytotaxa, 2021, 505, 201-212.	0.1	2
45	Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. Science of the Total Environment, 2021, 774, 145133.	3.9	27
46	Integrating Phenological and Geographical Information with Artificial Intelligence Algorithm to Map Rubber Plantations in Xishuangbanna. Remote Sensing, 2021, 13, 2793.	1.8	15
47	Neopestalotiopsis cavernicola sp. nov. from Gem Cave in Yunnan Province, China. Phytotaxa, 2021, 512, .	0.1	5
48	Morphology and phylogenetic analyses reveal Montagnula puerensis sp. nov. (Didymosphaeriaceae,) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf S
49	Novel saprobic Hermatomyces species (Hermatomycetaceae, Pleosporales) from China (Yunnan) Tj ETQq1 1 0.78	34314 rgB ⁻	T /Overlock 1
50	Fungal Pathogens in Grasslands. Frontiers in Cellular and Infection Microbiology, 2021, 11, 695087.	1.8	11
51	Crop-climate model in support of adjusting local ecological calendar in the Taxkorgan, eastern Pamir Plateau. Climatic Change, 2021, 167, 1.	1.7	1
52	A Taxonomic Appraisal of Bambusicolous Fungi in Occultibambusaceae (Pleosporales,) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5	0 142 Td (Do
53	Ganoderma (Ganodermataceae, Basidiomycota) Species from the Greater Mekong Subregion. Journal of Fungi (Basel, Switzerland), 2021, 7, 819.	1.5	18
54	Assessment of veterinary antibiotics from animal manure-amended soil to growing alfalfa, alfalfa silage, and milk. Ecotoxicology and Environmental Safety, 2021, 224, 112699.	2.9	10

#	Article	IF	CITATIONS
55	Effects of degraded grassland conversion to mango plantation on soil CO2 fluxes. Applied Soil Ecology, 2021, 167, 104045.	2.1	5
56	One New Species and Two New Host Records of Apiospora from Bamboo and Maize in Northern Thailand with Thirteen New Combinations. Life, 2021, 11, 1071.	1.1	13
57	Identification of Bioactive Phytochemicals from Six Plants: Mechanistic Insights into the Inhibition of Rumen Protozoa, Ammoniagenesis, and α-Glucosidase. Biology, 2021, 10, 1055.	1.3	9
58	Large-Scale Characterization of the Soil Microbiome in Ancient Tea Plantations Using High-Throughput 16S rRNA and Internal Transcribed Spacer Amplicon Sequencing. Frontiers in Microbiology, 2021, 12, 745225.	1.5	12
59	Koorchaloma oryzae sp. nov. (Stachybotryaceae, Sordariomycetes), from Oryza sativa (Poaceae) in northern Thailand. Phytotaxa, 2021, 524, 283-292.	0.1	1
60	Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies. Antioxidants, 2021, 10, 1918.	2.2	27
61	Fungal diversity notes 1387–1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2021, 111, 1-335.	4.7	88
62	Taxonomic and phylogenic appraisal of a novel species and a new record of Stictidaceae from coffee in Yunnan Province, China. Phytotaxa, 2021, 528, 111-124.	0.1	7
63	Dothidea kunmingensis, a novel asexual species of Dothideaceae on Jasminum nudiflorum (winter) Tj ETQq $1\ 1\ 0$.784314 r	gBŢ/Overloc
64	Taxonomy and Phylogeny Reveal Two New Potential Edible Ectomycorrhizal Mushrooms of Thelephora from East Asia. Diversity, 2021, 13, 646.	0.7	3
65	Young shade trees improve soil quality in intensively managed coffee systems recently converted to agroforestry in Yunnan Province, China. Plant and Soil, 2020, 453, 119-137.	1.8	21
66	Suppression of amino acid and oligopeptide mineralization by organic manure addition in a semiarid environment. Land Degradation and Development, 2020, 31, 1915-1925.	1.8	1
67	Taxonomic and phylogenetic characterizations reveal three new species of Mendogia (Myriangiaceae,) Tj ETQq1	1 0.7843 0.5	14 rgBT /Ove
68	Screening of Phosphate-Solubilizing Fungi From Air and Soil in Yunnan, China: Four Novel Species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in Microbiology, 2020, 11, 585215.	1.5	50
69	Structure of Bacterial Communities in Phosphorus-Enriched Rhizosphere Soils. Applied Sciences (Switzerland), 2020, 10, 6387.	1.3	11
70	Quantifying farmers' climate change adaptation strategies and the strategy determinants in Southwest China. International Journal of Climate Change Strategies and Management, 2020, 12, 511-532.	1.5	6
71	Taxonomic novelties in Magnolia-associated pleosporalean fungi in the Kunming Botanical Gardens (Yunnan, China). PLoS ONE, 2020, 15, e0235855.	1.1	35
72	Giant milkweed (Calotropis gigantea): A new plant resource to inhibit protozoa and decrease ammoniagenesis of rumen microbiota in vitro without impairing fermentation. Science of the Total Environment, 2020, 743, 140665.	3.9	13

#	Article	IF	CITATIONS
73	Contrasted effects of temperature during defoliation vs. refoliation periods on the infection of rubber powdery mildew (Oidium heveae) in Xishuangbanna, China. International Journal of Biometeorology, 2020, 64, 1835-1845.	1.3	8
74	Nutrient value of wild fodder species and the implications for improving the diet of mithun (Bos) Tj ETQq0 0 0 r	gBT/Qverl	ock ₁₀ 0 Tf 50 1
75	Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2020, 100, 5-277.	4.7	156
76	Taxonomy and phylogeny of hyaline-spored coelomycetes. Fungal Diversity, 2020, 100, 279-801.	4.7	58
77	Genome Wide Identification of the MLO Gene Family Associated with Powdery Mildew Resistance in Rubber Trees (Hevea brasiliensis). Tropical Plant Biology, 2020, 13, 331-342.	1.0	2
78	Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity, 2020, 102, 1-203.	4.7	93
79	Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere, 2020, 260, 127578.	4.2	106
80	Discovery of novel fungal species and pathogens on bat carcasses in a cave in Yunnan Province, China. Emerging Microbes and Infections, 2020, 9, 1554-1566.	3.0	14
81	Will heat stress take its toll on milk production in China?. Climatic Change, 2020, 161, 637-652.	1.7	35
82	Mechanism of methane uptake in profiles of tropical soils converted from forest to rubber plantations. Soil Biology and Biochemistry, 2020, 145, 107796.	4.2	17
83	Three Novel Entomopathogenic Fungi From China and Thailand. Frontiers in Microbiology, 2020, 11, 608991.	1.5	5
84	Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Diversity, 2020, 105, 17-318.	4.7	70
85	Taxonomy and phylogenetic appraisal of Spegazzinia musae sp. nov. and S. deightonii (Didymosphaeriaceae, Pleosporales) on Musaceae from Thailand. MycoKeys, 2020, 70, 19-37.	0.8	12
86	<p>Loculosulcatispora thailandica gen. et sp. nov. (Sulcatisporaceae), saprobic on woody litter in Thailand</p> . Phytotaxa, 2020, 475, 67-78.	0.1	5
87	Domestication of Ganoderma leucocontextum, G. resinaceum, and G. gibbosum Collected from Yunnan Province, China. Biosciences, Biotechnology Research Asia, 2020, 17, 07-26.	0.2	4
88	<p>Roridomyces phyllostachydis (Agaricales, Mycenaceae), a new bioluminescent fungus from Northeast India</p> . Phytotaxa, 2020, 459, 155-167.	0.1	8
89	Bartalinia kevinhydei (Ascomycota), a new leaf-spot causing fungus on teak (Tectona grandis) from Northern Thailand . Phytotaxa, 2020, 474, 27-39.	0.1	2
90	Evaluation of key meteorological determinants of wintering and flowering patterns of five rubber clones in Xishuangbanna, Yunnan, China. International Journal of Biometeorology, 2019, 63, 617-625.	1.3	16

#	Article	IF	Citations
91	Compost Amended with N Enhances Maize Productivity and Soil Properties in Semiâ€Arid Agriculture. Agronomy Journal, 2019, 111, 2536-2544.	0.9	7
92	Phosphorus mitigation remains critical in water protection: A review and meta-analysis from one of China's most eutrophicated lakes. Science of the Total Environment, 2019, 689, 1336-1347.	3.9	44
93	Role of Traditional Ecological Knowledge and Seasonal Calendars in the Context of Climate Change: A Case Study from China. Sustainability, 2019, 11, 3243.	1.6	18
94	Converting forests into rubber plantations weakened the soil CH ₄ sink in tropical uplands. Land Degradation and Development, 2019, 30, 2311-2322.	1.8	12
95	The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 2019, 97, 1-136.	4.7	459
96	A Survey of Termitomyces (Lyophyllaceae, Agaricales), Including a New Species, from a Subtropical Forest in Xishuangbanna, China. Mycobiology, 2019, 47, 391-400.	0.6	14
97	Substrate Preference Determines Macrofungal Biogeography in the Greater Mekong Sub-Region. Forests, 2019, 10, 824.	0.9	10
98	<p>Taxonomy and molecular phylogeny of Thyrostroma ephedricola sp. nov. (Dothidotthiaceae) and proposal for Thyrostroma jaczewskii comb. nov.</p> . Phytotaxa, 2019, 416, 243-256.	0.1	7
99	Regional trade of medicinal plants has facilitated the retention of traditional knowledge: case study in Gilgit-Baltistan Pakistan. Journal of Ethnobiology and Ethnomedicine, 2019, 15, 6.	1.1	17
100	Distribution margins as natural laboratories to infer species' flowering responses to climate warming and implications for frost risk. Agricultural and Forest Meteorology, 2019, 268, 299-307.	1.9	44
101	Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2019, 96, 1-242.	4.7	148
102	Assessing the Livelihood Vulnerability of Rural Indigenous Households to Climate Changes in Central Nepal, Himalaya. Sustainability, 2019, 11, 2977.	1.6	70
103	Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity, 2019, 95, 1-273.	4.7	203
104	Taxonomic and phylogenetic characterizations reveal two new species and two new records of Roussoella (Roussoellaceae, Pleosporales) from Yunnan, China. Mycological Progress, 2019, 18, 577-591.	0.5	12
105	Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change. Forest Ecology and Management, 2019, 439, 55-69.	1.4	14
106	Expanding Rubber Plantations in Southern China: Evidence for Hydrological Impacts. Water (Switzerland), 2019, 11, 651.	1.2	12
107	Changes in Fungal Communities across a Forest Disturbance Gradient. Applied and Environmental Microbiology, 2019, 85, .	1.4	41
108	Roads as drivers of aboveâ€ground biomass loss at tropical forest edges in Xishuangbanna, Southwest China. Land Degradation and Development, 2019, 30, 1325-1335.	1.8	4

#	Article	IF	CITATIONS
109	<p>Taxonomic and phylogenetic characterizations of Keissleriella bambusicola sp. nov. (Lentitheciaceae, Pleosporales) from Yunnan, China</p> . Phytotaxa, 2019, 423, 129-144.	0.1	6
110	Ganoderma weixiensis (Polyporaceae, Basidiomycota), a new member of the G. lucidum complex from Yunnan Province, China . Phytotaxa, 2019, 423, 75-86.	0.1	7
111	Morphology and Multi-Gene Phylogeny Reveal Pestalotiopsis pinicola sp. nov. and a New Host Record of Cladosporium anthropophilum from Edible Pine (Pinus armandii) Seeds in Yunnan Province, China. Pathogens, 2019, 8, 285.	1.2	14
112	Phylogenetic diversity correlated with aboveâ€ground biomass production during forest succession: Evidence from tropical forests in Southeast Asia. Journal of Ecology, 2019, 107, 1419-1432.	1.9	32
113	Sustaining Biodiversity and Ecosystem Services in the Hindu Kush Himalaya. , 2019, , 127-165.		50
114	Responses of rubber leaf phenology to climatic variations in Southwest China. International Journal of Biometeorology, 2019, 63, 607-616.	1.3	31
115	Complete chloroplast genome of the threatened Rhoiptelea chiliantha (Juglandaceae s.l.). Conservation Genetics Resources, 2019, 11, 317-319.	0.4	2
116	A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production. MycoKeys, 2019, 51, 65-83.	0.8	13
117	Additions to the knowledge of Ganoderma in Thailand: Ganoderma casuarinicola, a new record; and Ganoderma thailandicum sp. nov MycoKeys, 2019, 59, 47-65.	0.8	12
118	The genus Simplicillium. MycoKeys, 2019, 60, 69-92.	0.8	34
119	Rubber seed oil and flaxseed oil supplementation on serum fatty acid profile, oxidation stability of serum and milk, and immune function of dairy cows. Asian-Australasian Journal of Animal Sciences, 2019, 32, 1363-1372.	2.4	6
120	Effectiveness of protected areas in preventing rubber expansion and deforestation in <scp>X</scp> ishuangbanna, <scp>S</scp> outhwest <scp>C</scp> hina. Land Degradation and Development, 2018, 29, 2417-2427.	1.8	22
121	Tree species and recovery time drives soil restoration after mining: A chronosequence study. Land Degradation and Development, 2018, 29, 1738-1747.	1.8	22
122	Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Scientific Reports, 2018, 8, 5879.	1.6	55
123	Spatial and seasonal variation in soil respiration along a slope in a rubber plantation and a natural forest in Xishuangbanna, Southwest China. Journal of Mountain Science, 2018, 15, 695-707.	0.8	14
124	Impact of rubber plantation age on erosive potential studied with USLE model. Journal of Applied Water Engineering and Research, 2018, 6, 252-261.	1.0	3
125	Anticipating Climatic Variability: The Potential of Ecological Calendars. Human Ecology, 2018, 46, 249-257.	0.7	35
126	Determinants of livelihood vulnerability in farming communities in two sites in the Asian Highlands. Water International, 2018, 43, 165-182.	0.4	57

#	Article	IF	Citations
127	The cover uncovered: Bark control over wood decomposition. Journal of Ecology, 2018, 106, 2147-2160.	1.9	45
128	The importance of plot size and the number of sampling seasons on capturing macrofungal species richness. Fungal Biology, 2018, 122, 692-700.	1.1	8
129	A New Opportunity to Recover Native Forests in China. Conservation Letters, 2018, 11, e12396.	2.8	17
130	Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys, 2018, 33, 25-67.	0.8	65
131	Two novel species of Neoaquastroma (Parabambusicolaceae, Pleosporales) with their phoma-like asexual morphs. MycoKeys, 2018, 34, 47-62.	0.8	9
132	Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Diversity, 2018, 93, 1-160.	4.7	125
133	Caution Is Needed in Quantifying Terrestrial Biomass Responses to Elevated Temperature: Meta-Analyses of Field-Based Experimental Warming Across China. Forests, 2018, 9, 619.	0.9	4
134	Using farmers' local knowledge of tree provision of ecosystem services to strengthen the emergence of coffee-agroforestry landscapes in southwest China. PLoS ONE, 2018, 13, e0204046.	1.1	33
135	Significance of Mangrove Biodiversity Conservation in Fishery Production and Living Conditions of Coastal Communities in Sri Lanka. Diversity, 2018, 10, 20.	0.7	19
136	Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Scientific Reports, 2018, 8, 7832.	1.6	28
137	Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China. Agriculture, Ecosystems and Environment, 2018, 265, 190-197.	2.5	33
138	Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity, 2018, 89, 1-236.	4.7	169
139	Comparison of Pixel- and Object-Based Approaches in Phenology-Based Rubber Plantation Mapping in Fragmented Landscapes. Remote Sensing, 2018, 10, 44.	1.8	26
140	Native Forests Have a Higher Diversity of Macrofungi Than Comparable Plantation Forests in the Greater Mekong Subregion. Forests, 2018, 9, 402.	0.9	12
141	Morpho-Molecular Characterization of Two Ampelomyces spp. (Pleosporales) Strains Mycoparasites of Powdery Mildew of Hevea brasiliensis. Frontiers in Microbiology, 2018, 9, 12.	1.5	42
142	Networked and embedded scientific experiments will improve restoration outcomes. Frontiers in Ecology and the Environment, 2018, 16, 288-294.	1.9	43
143	Agroforestry systems: Metaâ€analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degradation and Development, 2018, 29, 3886-3897.	1.8	137
144	Fruiting patterns of macrofungi in tropical and temperate land use types in Yunnan Province, China. Acta Oecologica, 2018, 91, 7-15.	0.5	3

#	Article	IF	CITATIONS
145	Scaling green rubber cultivation in Southwest Chinaâ€"An integrative analysis of stakeholder perspectives. Science of the Total Environment, 2017, 580, 1475-1482.	3.9	20
146	Taxonomic revision and phylogenetic analyses of rubber powdery mildew fungi. Microbial Pathogenesis, 2017, 105, 185-195.	1.3	21
147	Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Scientific Reports, 2017, 7, 42184.	1.6	54
148	Farm types and farmer motivations to adapt: Implications for design of sustainable agricultural interventions in the rubber plantations of South West China. Agricultural Systems, 2017, 154, 1-12.	3.2	29
149	Seasonal differences in soil respiration and methane uptake in rubber plantation and rainforest. Agriculture, Ecosystems and Environment, 2017, 240, 314-328.	2.5	29
150	Current re-vegetation patterns and restoration issues in degraded geological phosphorus-rich mountain areas: A synthetic analysis of ACentral Yunnan, SW China. Plant Diversity, 2017, 39, 140-148.	1.8	12
151	China's fight to halt tree cover loss. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162559.	1.2	60
152	Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 2017, 83, 1-261.	4.7	180
153	The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Diversity, 2017, 84, 1-23.	4.7	84
154	Lost in transition: Forest transition and natural forest loss in tropical China. Plant Diversity, 2017, 39, 149-153.	1.8	25
155	Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, 2017, 225, 469-480.	3.7	169
156	Is there decentralization in North Korea? Evidence and lessons from the sloping land management program 2004–2014. Land Use Policy, 2017, 61, 113-125.	2.5	15
157	Rubber tree allometry, biomass partitioning and carbon stocks in mountainous landscapes of sub-tropical China. Forest Ecology and Management, 2017, 404, 84-99.	1.4	23
158	Using leaf area index (LAI) to assess vegetation response to drought in Yunnan province of China. Journal of Mountain Science, 2017, 14, 1863-1872.	0.8	33
159	Soil respiration in sloping rubber plantations and tropical natural forests in Xishuangbanna, China. Agriculture, Ecosystems and Environment, 2017, 249, 237-246.	2.5	24
160	Towards a natural classification of Ophiobolus and ophiobolus-like taxa; introducing three novel genera Ophiobolopsis, Paraophiobolus and Pseudoophiobolus in Phaeosphaeriaceae (Pleosporales). Fungal Diversity, 2017, 87, 299-339.	4.7	35
161	First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycological Progress, 2017, 16, 1029-1039.	0.5	24
162	Prioritizing fodder species based on traditional knowledge: a case study of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, Southwest China. Journal of Ethnobiology and Ethnomedicine, 2017, 13, 24.	1.1	24

#	Article	IF	Citations
163	Multiple origins and a narrow genepool characterise the African tea germplasm: concordant patterns revealed by nuclear and plastid DNA markers. Scientific Reports, 2017, 7, 4053.	1.6	22
164	Ring-widths of the above tree-line shrub Rhododendron reveal the change of minimum winter temperature over the past 211Âyears in Southwestern China. Climate Dynamics, 2017, 48, 3919-3933.	1.7	20
165	Is China's unparalleled and understudied bee diversity at risk?. Biological Conservation, 2017, 210, 19-28.	1.9	26
166	Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biology Reviews, 2017, 31, 1-11.	1.9	18
167	Critical climate periods for grassland productivity on China's Loess Plateau. Agricultural and Forest Meteorology, 2017, 233, 101-109.	1.9	61
168	Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity, 2017, 87, 1-235.	4.7	165
169	The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition. Frontiers in Microbiology, 2017, 8, 1120.	1.5	36
170	Domestication Origin and Breeding History of the Tea Plant (Camellia sinensis) in China and India Based on Nuclear Microsatellites and cpDNA Sequence Data. Frontiers in Plant Science, 2017, 8, 2270.	1.7	71
171	Selection of Native Tree Species for Subtropical Forest Restoration in Southwest China. PLoS ONE, 2017, 12, e0170418.	1.1	49
172	Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China. Forests, 2016, 7, 12.	0.9	17
173	Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal. PLoS ONE, 2016, 11, e0163916.	1.1	57
174	Insights into the Genetic Relationships and Breeding Patterns of the African Tea Germplasm Based on nSSR Markers and cpDNA Sequences. Frontiers in Plant Science, 2016, 7, 1244.	1.7	39
175	Land-use change impact on time-averaged carbon balances: Rubber expansion and reforestation in a biosphere reserve, South-West China. Forest Ecology and Management, 2016, 372, 149-163.	1.4	42
176	Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 2016, 80, 1-270.	4.7	314
177	Bright spots: seeds of a good Anthropocene. Frontiers in Ecology and the Environment, 2016, 14, 441-448.	1.9	414
178	Global versus Chinese perspectives on the phylogeny of the Nâ€fixing clade. Journal of Systematics and Evolution, 2016, 54, 392-399.	1.6	7
179	Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 2016, 6, 29987.	1.6	350
180	Land-use response to drought scenarios and water policy intervention in Lijiang, SW China. Land Use Policy, 2016, 57, 377-387.	2.5	16

#	Article	IF	Citations
181	Taxonomy and phylogeny of Laburnicola gen. nov. and Paramassariosphaeria gen. nov. (Didymosphaeriaceae, Massarineae, Pleosporales). Fungal Biology, 2016, 120, 1354-1373.	1.1	28
182	Soil respiration under three different land use types in a tropical mountain region of China. Journal of Mountain Science, 2016, 13, 416-423.	0.8	6
183	Impact of herbicide application on soil erosion and induced carbon loss in a rubber plantation of Southwest China. Catena, 2016, 145, 180-192.	2.2	51
184	Using in silico techniques: Isolation and characterization of an insect cuticle-degrading-protease gene from Beauveria bassiana. Microbial Pathogenesis, 2016, 97, 189-197.	1.3	3
185	Farmers' Perceptions of and Adaptations to Changing Climate in the Melamchi Valley of Nepal. Mountain Research and Development, 2016, 36, 15-30.	0.4	60
186	Climate modelling for agroforestry species selection in Yunnan Province, China. Environmental Modelling and Software, 2016, 75, 263-272.	1.9	58
187	Carbon balance of rubber (Hevea brasiliensis) plantations: A review of uncertainties at plot, landscape and production level. Agriculture, Ecosystems and Environment, 2016, 221, 8-19.	2.5	67
188	Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system. Journal of Invertebrate Pathology, 2016, 133, 87-94.	1.5	36
189	Lignicolous freshwater fungi along a north–south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function?. Fungal Ecology, 2016, 19, 190-200.	0.7	97
190	Getting Road Expansion on the Right Track: A Framework for Smart Infrastructure Planning in the Mekong. PLoS Biology, 2016, 14, e2000266.	2.6	19
191	Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture Expansion in Xishuangbanna, SW China. PLoS ONE, 2016, 11, e0150062.	1.1	62
192	Can Community Members Identify Tropical Tree Species for REDD+ Carbon and Biodiversity Measurements?. PLoS ONE, 2016, 11, e0152061.	1.1	14
193	Introducing <i>Melanoctona tectonae </i> gen. et sp. nov. and <i>Minimelanolocus yunnanensis </i> pov. (<i> Herpotrichiellaceae </i> , Chaetothyriales). Cryptogamie, Mycologie, 2016, 37, 477-492.	0.2	10
194	Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient. Ecosphere, 2015, 6, 1-20.	1.0	46
195	Intensified food production and correlated risks to human health in the Greater Mekong Subregion: a systematic review. Environmental Health, 2015, 14, 43.	1.7	27
196	De novo sequencing and assembly analysis of transcriptome in the Sodom apple (Calotropis gigantea). BMC Genomics, 2015, 16, 723.	1.2	20
197	Fungal Biodiversity Profiles 11–20. Cryptogamie, Mycologie, 2015, 36, 355-380.	0.2	51
198	The Genus <i>Murispora</i> . Cryptogamie, Mycologie, 2015, 36, 419-448.	0.2	16

#	Article	IF	Citations
199	Participatory Selection of Tree Species for Agroforestry on Sloping Land in North Korea. Mountain Research and Development, 2015, 35, 318-327.	0.4	19
200	Changing Perceptions of Forest Value and Attitudes toward Management of a Recently Established Nature Reserve: A Case Study in Southwest China. Forests, 2015, 6, 3136-3164.	0.9	27
201	Assessing drought variability since 1650 AD from treeâ€rings on the Jade Dragon Snow Mountain, southwest China. International Journal of Climatology, 2015, 35, 4057-4065.	1.5	25
202	Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biological Conservation, 2015, 184, 335-345.	1.9	70
203	Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environmental Change, 2015, 34, 48-58.	3.6	281
204	Indigenous trees restore soil microbial biomass at faster rates than exotic species. Plant and Soil, 2015, 396, 151-161.	1.8	26
205	Toward Operational Criteria for Ecosystem Approaches to Health. EcoHealth, 2015, 12, 220-226.	0.9	16
206	Assessing the effectiveness of payments for ecosystem services forÂdiversifying rubber in Yunnan, China. Environmental Modelling and Software, 2015, 69, 187-195.	1.9	47
207	Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity, 2015, 72, 199-301.	4.7	273
208	<i>Polyporus umbellatus</i> , an Edible-Medicinal Cultivated Mushroom with Multiple Developed Health-Care Products as Food, Medicine and Cosmetics: A Review. Cryptogamie, Mycologie, 2015, 36, 3-42.	0.2	27
209	Opportunities and challenges of the ecosystem approach. Futures, 2015, 67, 40-51.	1.4	25
210	Litterfall and nutrient return along a disturbance gradient in a tropical montane forest. Forest Ecology and Management, 2015, 353, 97-106.	1.4	44
211	Statistical identification of chilling and heat requirements for apricot flower buds in Beijing, China. Scientia Horticulturae, 2015, 195, 138-144.	1.7	44
212	Towards a natural classification of Astrosphaeriella-like species; introducing Astrosphaeriellaceae and Pseudoastrosphaeriellaceae fam. nov. and Astrosphaeriellopsis, gen. nov Fungal Diversity, 2015, 74, 143-197.	4.7	60
213	Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in China. Agricultural and Forest Meteorology, 2015, 201, 1-7.	1.9	138
214	Deforestation and fragmentation of natural forests in the upper Changhua watershed, Hainan, China: implications for biodiversity conservation. Environmental Monitoring and Assessment, 2015, 187, 4137.	1.3	25
215	Yet Another Empty Forest: Considering the Conservation Value of a Recently Established Tropical Nature Reserve. PLoS ONE, 2015, 10, e0117920.	1.1	27
216	Structure of the Epiphyte Community in a Tropical Montane Forest in SW China. PLoS ONE, 2015, 10, e0122210.	1.1	32

#	Article	lF	CITATIONS
217	Local Dynamics Driving Forest Transition: Insights from Upland Villages in Southwest China. Forests, 2014, 5, 214-233.	0.9	53
218	Revision of genera in Asterinales. Fungal Diversity, 2014, 68, 1-68.	4.7	46
219	Building ecosystem resilience for climate change adaptation in the Asian highlands. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 709-718.	3.6	46
220	Dothideales. Fungal Diversity, 2014, 68, 105-158.	4.7	49
221	Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Diversity, 2014, 69, 57-91.	4.7	125
222	Tubeufiales, ord. nov., integrating sexual and asexual generic names. Fungal Diversity, 2014, 68, 239-298.	4.7	86
223	Processes Underlying 50 Years of Local Forest-Cover Change in Yunnan, China. Forests, 2014, 5, 3257-3273.	0.9	20
224	Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species. Ecological Modelling, 2014, 282, 18-24.	1.2	59
225	Mapping wetland cover in the greater Himalayan region: a hybrid method combining multispectral and ecological characteristics. Environmental Earth Sciences, 2014, 71, 1083-1094.	1.3	17
226	Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Regional Environmental Change, 2014, 14, 611-621.	1.4	79
227	The sooty moulds. Fungal Diversity, 2014, 66, 1-36.	4.7	417
228	Environmental stratification to model climate change impacts on biodiversity and rubber production in Xishuangbanna, Yunnan, China. Biological Conservation, 2014, 170, 264-273.	1.9	79
229	Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Diversity, 2014, 64, 305-315.	4.7	126
230	Revision of Phaeosphaeriaceae. Fungal Diversity, 2014, 68, 159-238.	4.7	127
231	A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). Fungal Diversity, 2014, 68, 69-104.	4.7	106
232	Introducing the Novel Species, <i>Dothiorella symphoricarposicola </i> , from Snowberry in Italy. Cryptogamie, Mycologie, 2014, 35, 257-270.	0.2	12
233	One stop shop: backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity, 2014, 67, 21-125.	4.7	241
234	Greater diurnal temperature difference, an overlooked but important climatic driver of rubber yield. Industrial Crops and Products, 2014, 62, 14-21.	2.5	23

#	Article	IF	CITATIONS
235	<i>Dematiopleospora mariae</i> gen. sp. nov., from Ononis <i>Spinosa</i> in Italy. Cryptogamie, Mycologie, 2014, 35, 105-117.	0.2	22
236	Regime shifts limit the predictability of land-system change. Global Environmental Change, 2014, 28, 75-83.	3.6	103
237	Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Global Ecology and Conservation, 2014, 1, 2-12.	1.0	52
238	Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal. Climatic Change, 2014, 125, 445-460.	1.7	62
239	Chilling and heat requirements for flowering in temperate fruit trees. International Journal of Biometeorology, 2014, 58, 1195-1206.	1.3	97
240	Integrating local hybrid knowledge and state support for climate change adaptation in the Asian Highlands. Climatic Change, 2014, 124, 93-104.	1.7	36
241	Herbarium specimens show contrasting phenological responses to Himalayan climate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10615-10619.	3.3	116
242	Can carbon-trading schemes help to protect China's most diverse forest ecosystems? A case study from Xishuangbanna, Yunnan. Land Use Policy, 2014, 38, 646-656.	2.5	42
243	Analyzing the drivers of tree planting in Yunnan, China, with Bayesian networks. Land Use Policy, 2014, 36, 248-258.	2.5	62
244	Investigation of rubber seed yield in Xishuangbanna and estimation of rubber seed oil based biodiesel potential in Southeast Asia. Energy, 2014, 69, 837-842.	4.5	37
245	Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. Catena, 2014, 121, 248-259.	2.2	68
246	Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecological Indicators, 2014, 36, 749-756.	2.6	152
247	Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov., Roussoella and Roussoellopsis. Phytotaxa, 2014, 181, 1.	0.1	69
248	New species of Phallus from a subtropical forest in Xishuangbanna, China. Phytotaxa, 2014, 163, 91.	0.1	10
249	Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. International Journal of Biometeorology, 2013, 57, 225-240.	1.3	62
250	Families of Dothideomycetes. Fungal Diversity, 2013, 63, 1-313.	4.7	509
251	Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Diversity, 2013, 62, 1-40.	4.7	182
252	Effects of Vegetation Restoration on Soil Conservation and Sediment Loads in China: A Critical Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 1384-1415.	6.6	76

#	Article	IF	CITATIONS
253	Large or small? Rethinking China's forest bioenergy policies. Biomass and Bioenergy, 2013, 59, 84-91.	2.9	13
254	Incentives for carbon sequestration and energy production in low productivity collective forests in Southwest China. Biomass and Bioenergy, 2013, 59, 92-99.	2.9	4
255	Response of chestnut phenology in China to climate variation and change. Agricultural and Forest Meteorology, 2013, 180, 164-172.	1.9	73
256	Recalibrating China's environmental policy: The next 10 years. Biological Conservation, 2013, 166, 287-292.	1.9	21
257	Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
258	Deforestation and Changes in Landscape Patterns from 1979 to 2006 in Suan County, DPR Korea. Forests, 2013, 4, 968-983.	0.9	17
259	Mekong hydropower: drivers of change and governance challenges. Frontiers in Ecology and the Environment, 2012, 10, 91-98.	1.9	141
260	The forgotten D: challenges of addressing forest degradation in complex mosaic landscapes under REDD+. Geografisk Tidsskrift, 2012, 112, 63-76.	0.4	76
261	Coping with climate-induced water stresses through time and space in the mountains of Southwest China. Regional Environmental Change, 2012, 12, 855-866.	1.4	23
262	Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Diversity, 2012, 56, 31-47.	4.7	80
263	Looking below the ground: Prediction of Tuber indicum habitat using the Weights of Evidence method. Ecological Modelling, 2012, 247, 27-39.	1.2	7
264	Segregate or Integrate for Multifunctionality and Sustained Change Through Rubber-Based Agroforestry in Indonesia and China. Advances in Agroforestry, 2012, , 69-104.	0.8	36
265	Climate Change Adaptation Among Tibetan Pastoralists: Challenges in Enhancing Local Adaptation Through Policy Support. Environmental Management, 2012, 50, 607-621.	1.2	52
266	Seasonal Response of Grasslands to Climate Change on the Tibetan Plateau. PLoS ONE, 2012, 7, e49230.	1.1	56
267	Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Diversity, 2012, 56, 189-198.	4.7	36
268	Participatory agroforestry development for restoring degraded sloping land in DPR Korea. Agroforestry Systems, 2012, 85, 291-303.	0.9	25
269	Decentralization of Tree Seedling Supply Systems for Afforestation in the West of Yunnan Province, China. Small-Scale Forestry, 2012, 11, 147-166.	0.7	17
270	Creating a †Conservation with Chinese Characteristics'. Biological Conservation, 2011, 144, 1347-1355.	1.9	28

#	Article	IF	CITATIONS
271	Integrative Management of Commercialized Wild Mushroom: A Case Study of Thelephora ganbajun in Yunnan, Southwest China. Environmental Management, 2011, 48, 98-108.	1.2	38
272	China's new forests aren't as green as they seem. Nature, 2011, 477, 371-371.	13.7	144
273	Mekong Hydropower Development. Science, 2011, 332, 178-179.	6.0	195
274	Pursuits of adaptiveness in the shared rivers of Monsoon Asia. International Environmental Agreements: Politics, Law and Economics, 2010, 10, 355-375.	1.5	44
275	Climate change and sediment flux from the Roof of the World. Earth Surface Processes and Landforms, 2010, 35, 732-735.	1.2	16
276	Sensitivity of streamflow from a Himalayan catchment to plausible changes in land cover and climate. Hydrological Processes, 2010, 24, 1379-1390.	1.1	30
277	Greenhouse gas emissions from nitrogen fertilizer use in China. Environmental Science and Policy, 2010, 13, 688-694.	2.4	152
278	Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22151-22156.	3.3	694
279	Functional Links Between Biodiversity, Livelihoods, and Culture in a Hani Swidden Landscape in Southwest China. Ecology and Society, 2009, 14, .	1.0	81
280	The Rubber Juggernaut. Science, 2009, 324, 1024-1025.	6.0	347
281	Response of hydrological processes to landâ€cover and climate changes in Kejie watershed, southâ€west China. Hydrological Processes, 2009, 23, 1179-1191.	1.1	162
282	The Melting Himalayas: Cascading Effects of Climate Change on Water, Biodiversity, and Livelihoods. Conservation Biology, 2009, 23, 520-530.	2.4	735
283	Participatory technology development for incorporating non-timber forest products into forest restoration in Yunnan, Southwest China. Forest Ecology and Management, 2009, 257, 2010-2016.	1.4	43
284	Matsutake Trade in Yunnan Province, China: An Overview. Economic Botany, 2008, 62, 269-277.	0.8	49
285	Understanding Land Use, Livelihoods, and Health Transitions among Tibetan Nomads: A Case from Gangga Township, Dingri County, Tibetan Autonomous Region of China. EcoHealth, 2008, 5, 104-114.	0.9	24
286	Critical linkages between land-use transition and human health in the Himalayan region. Environment International, 2008, 34, 239-247.	4.8	40
287	Rethinking the Effectiveness of Public Protected Areas in Southwestern China. Conservation Biology, 2007, 21, 318-328.	2.4	124
288	Simplification of Pine Forests Due to Utilization by Tibetan Villages in Southwest China. Environmental Management, 2007, 40, 866-879.	1.2	5

#	Article	IF	CITATIONS
289	Seeing the wood for the trees: how conservation policies can place greater pressure on village forests in southwest China. Biodiversity and Conservation, 2007, 16, 1959-1971.	1.2	27
290	Multiple Impacts of Land-Use/Cover Change. , 2006, , 71-116.		39
291	Linking Land-Change Science and Policy: Current Lessons and Future Integration. Global Change - the IGBP Series, 2006, , 157-171.	2.1	9
292	The power of participatory monitoring and evaluation: insights from south-west China. Development in Practice, 2006, 16, 400-411.	0.6	13
293	Mapping non-wood forest product (matsutake mushrooms) using logistic regression and a GIS expert system. Ecological Modelling, 2006, 198, 208-218.	1.2	58
294	Seeing the wood for the trees: how conservation policies can place greater pressure on village forests in southwest China. Topics in Biodiversity and Conservation, 2006, , 385-397.	0.3	1
295	Integrating Sacred Knowledge for Conservation: Cultures and Landscapes in Southwest China. Ecology and Society, 2005, 10 , .	1.0	131
296	Forest transitions: towards a global understanding of land use change. Global Environmental Change, 2005, 15, 23-31.	3.6	1,062
297	State Simplifications of Land-Use and Biodiversity in the Uplands of Yunnan, Eastern Himalayan Region. Advances in Global Change Research, 2005, , 541-550.	1.6	4
298	Decentralisation and Accountability in Forest Management: A Case from Yunnan, Southwest China. European Journal of Development Research, 2004, 16, 153-173.	1.2	52
299	Biodiversity impact analysis in northwest Yunnan, southwest China. Biodiversity and Conservation, 2004, 13, 959-983.	1.2	153
300	The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 2001, 11, 261-269.	3.6	2,639
301	Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys, 0, 33, 25-67.	0.8	3
302	Conversion of rainforest to rubber plantations impacts rhizosphere soil mycobiome and alters soil biological activity. Land Degradation and Development, 0, , .	1.8	0