
Yizheng Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3585462/publications.pdf Version: 2024-02-01

YIZHENC LIN

#	Article	IF	CITATIONS
1	Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515, 96-99.	13.7	2,119
2	Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249-253.	13.7	1,555
3	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	15.6	1,535
4	Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.	13.3	800
5	Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles. Nano Letters, 2008, 8, 1649-1653.	4.5	733
6	Interfacial Control Toward Efficient and Lowâ€Voltage Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 2311-2316.	11.1	631
7	Quantumâ€Dot Lightâ€Emitting Diodes for Largeâ€Area Displays: Towards the Dawn of Commercialization. Advanced Materials, 2017, 29, 1607022.	11.1	620
8	Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics, 2019, 13, 760-764.	15.6	483
9	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6, 10505-10510.	2.8	352
10	Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. Journal of the American Chemical Society, 2019, 141, 6448-6452.	6.6	282
11	Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon, 2005, 43, 1944-1953.	5.4	276
12	Polyurea-Functionalized Multiwalled Carbon Nanotubes:  Synthesis, Morphology, and Raman Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 11925-11932.	1.2	227
13	High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research, 2014, 7, 1749-1758.	5.8	205
14	Exciton localization in solution-processed organolead trihalide perovskites. Nature Communications, 2016, 7, 10896.	5.8	195
15	Efficient and High-Color-Purity Light-Emitting Diodes Based on <i>In Situ</i> Grown Films of CsPbX ₃ (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano, 2017, 11, 11100-11107.	7.3	190
16	Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nature Communications, 2020, 11, 937.	5.8	184
17	Multihydroxy Polymer-Functionalized Carbon Nanotubes:Â Synthesis, Derivatization, and Metal Loading. Macromolecules, 2005, 38, 8634-8648.	2.2	179
18	Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. Journal of Materials Chemistry, 2010, 20, 1594.	6.7	176

#	Article	IF	CITATIONS
19	Dopant-Induced Shape Evolution of Colloidal Nanocrystals: The Case of Zinc Oxide. Journal of the American Chemical Society, 2010, 132, 13381-13394.	6.6	174
20	Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability. Nano Letters, 2016, 16, 2133-2138.	4.5	174
21	Quantum Dots for Display Applications. Angewandte Chemie - International Edition, 2020, 59, 22312-22323.	7.2	168
22	Growing Multihydroxyl Hyperbranched Polymers on the Surfaces of Carbon Nanotubes by in Situ Ring-Opening Polymerization. Macromolecules, 2004, 37, 8846-8853.	2.2	159
23	Ethanedithiol Treatment of Solutionâ€Processed ZnO Thin Films: Controlling the Intragap States of Electron Transporting Interlayers for Efficient and Stable Inverted Organic Photovoltaics. Advanced Energy Materials, 2015, 5, 1401606.	10.2	157
24	Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nature Photonics, 2022, 16, 505-511.	15.6	152
25	Highâ€Performance, Solutionâ€Processed, and Insulating‣ayerâ€Free Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801387.	11.1	151
26	Poly(N-isopropylacrylamide)-Coated Carbon Nanotubes:Â Temperature-Sensitive Molecular Nanohybrids in Water. Macromolecules, 2004, 37, 6683-6686.	2.2	129
27	Hotâ€Electron Injection in a Sandwiched TiO <i>_x</i> –Au–TiO <i>_x</i> Structure for Highâ€Performance Planar Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500038.	10.2	119
28	Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy, 2014, 10, 259-267.	8.2	111
29	Lowâ€Temperature Combustionâ€Synthesized Nickel Oxide Thin Films as Holeâ€Transport Interlayers for Solutionâ€Processed Optoelectronic Devices. Advanced Energy Materials, 2014, 4, 1301460.	10.2	110
30	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	5.8	105
31	Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nature Communications, 2019, 10, 3624.	5.8	104
32	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
33	Efficient and bright warm-white electroluminescence from lead-free metal halides. Nature Communications, 2021, 12, 1421.	5.8	99
34	Deciphering exciton-generation processes in quantum-dot electroluminescence. Nature Communications, 2020, 11, 2309.	5.8	96
35	Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis route. Journal of Materials Chemistry, 2006, 16, 3715.	6.7	94
36	High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery. Carbon, 2006, 44, 724-729.	5.4	85

#	Article	IF	CITATIONS
37	Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nature Communications, 2020, 11, 891.	5.8	83
38	Reproducible One-Step Fabrication of Compact MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films Derived from Mixed-Lead-Halide Precursors. Chemistry of Materials, 2014, 26, 7145-7150.	3.2	81
39	Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell. Nano Energy, 2018, 54, 218-226.	8.2	72
40	Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. Applied Physics Letters, 2016, 108, .	1.5	69
41	High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites. ACS Photonics, 2019, 6, 587-594.	3.2	69
42	Colloidal Indium-Doped Zinc Oxide Nanocrystals with Tunable Work Function: Rational Synthesis and Optoelectronic Applications. Chemistry of Materials, 2014, 26, 5169-5178.	3.2	68
43	Shelf‧table Quantumâ€Dot Lightâ€Emitting Diodes with High Operational Performance. Advanced Materials, 2020, 32, e2006178.	11.1	68
44	Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Science Advances, 2021, 7, eabg8458.	4.7	68
45	Low-voltage zinc oxide thin-film transistors with solution-processed channel and dielectric layers below 150 °C. Applied Physics Letters, 2012, 101, .	1.5	66
46	Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology, 2006, 17, 2882-2890.	1.3	65
47	Simple Approaches to Quality Large-Scale Tungsten Oxide Nanoneedles. Journal of Physical Chemistry B, 2004, 108, 15572-15577.	1.2	64
48	Catalysed growth of novel aluminium oxide nanorods. Applied Physics A: Materials Science and Processing, 2003, 77, 113-115.	1.1	63
49	Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature. Applied Physics Letters, 2012, 100, 203906.	1.5	57
50	Quantitative o perando visualization of the energy band depth profile in solar cells. Nature Communications, 2015, 6, 7745.	5.8	57
51	Inverted all-polymer solar cells based on a quinoxaline–thiophene/naphthalene-diimide polymer blend improved by annealing. Journal of Materials Chemistry A, 2016, 4, 3835-3843.	5.2	57
52	Colloidal chemically fabricated ZnO : Cu-based photodetector with extended UV-visible detection waveband. Nanoscale, 2013, 5, 9577.	2.8	55
53	Control of Barrier Width in Perovskite Multiple Quantum Wells for High Performance Green Light–Emitting Diodes. Advanced Optical Materials, 2019, 7, 1801575.	3.6	55
54	Solution-Processed Zinc Oxide Thin-Film Transistors With a Low-Temperature Polymer Passivation Layer. IEEE Electron Device Letters, 2012, 33, 1420-1422.	2.2	52

#	Article	IF	CITATIONS
55	Highâ€Performance Quantumâ€Dot Lightâ€Emitting Diodes Using NiO <i>_x</i> Holeâ€Injection Layers with a High and Stable Work Function. Advanced Functional Materials, 2020, 30, 1907265.	7.8	48
56	Dual-donor (Zni and VO) mediated ferromagnetism in copper-doped ZnO micron-scale polycrystalline films: a thermally driven defect modulation process. Nanoscale, 2013, 5, 3918.	2.8	46
57	Synthesis of Unstable Colloidal Inorganic Nanocrystals through the Introduction of a Protecting Ligand. Nano Letters, 2014, 14, 3117-3123.	4.5	40
58	Polymer-Grafted Carbon Spheres by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2005, 26, 1133-1139.	2.0	38
59	Facile synthesis and characterization of ultrathin cerium oxide nanorods. CrystEngComm, 2010, 12, 2663.	1.3	34
60	Design of the Hole-Injection/Hole-Transport Interfaces for Stable Quantum-Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 4649-4654.	2.1	34
61	Quantum Dots for Display Applications. Angewandte Chemie, 2020, 132, 22496-22507.	1.6	33
62	Novel Route to WOxNanorods and WS2Nanotubes from WS2Inorganic Fullerenes. Journal of Physical Chemistry B, 2006, 110, 18191-18195.	1.2	32
63	Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research, 2017, 10, 1329-1335.	5.8	26
64	Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach. Nanoscale Research Letters, 2013, 8, 153.	3.1	25
65	Silicon-Quantum-Dot Light-Emitting Diodes With Interlayer-Enhanced Hole Transport. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	24
66	Co-catalysed VLS growth of novel ceramic nanostructuresElectronic supplementary information (ESI) available: TEM, SEM and HRTEM images for MgO, SiOx and AlOx ceramic nanomaterials. See http://www.rsc.org/suppdata/jm/b3/b312498n/. Journal of Materials Chemistry, 2004, 14, 685.	6.7	23
67	High performance solar cell based on ultra-thin poly(3-hexylthiophene): Fullerene film without thermal and solvent annealing. Applied Physics Letters, 2011, 99, .	1.5	19
68	Bandgap engineering and shape control of colloidal CdxZn1â^'xO nanocrystals. Nanoscale, 2013, 5, 6464.	2.8	19
69	ZnO-Based Electron-Transporting Layers for Perovskite Light-Emitting Diodes: Controlling the Interfacial Reactions. Journal of Physical Chemistry Letters, 2022, 13, 694-703.	2.1	19
70	Construction of Electron Transfer Network by Self-Assembly of Self-n-Doped Fullerene Ammonium Iodide. Chemistry of Materials, 2016, 28, 8726-8731.	3.2	18
71	Reduced bound exciton and surface exciton emissions in Al-doped ZnO nanorods exposed to ambient air. Journal of Applied Physics, 2008, 104, 103529.	1.1	16
72	One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals. Nanoscale Research Letters, 2010, 5, 882-888.	3.1	16

#	Article	IF	CITATIONS
73	Solvent Resistant Hole-Transporting Thin Films via Diacetylene Cross-Linking and Their Applications in Solution-Processed QLEDs. ACS Applied Polymer Materials, 2020, 2, 3274-3281.	2.0	16
74	Printing and <i>In Situ</i> Assembly of CdSe/CdS Nanoplatelets as Uniform Films with Unity In-Plane Transition Dipole Moment. Journal of Physical Chemistry Letters, 2020, 11, 4524-4529.	2.1	15
75	Effects of rapid thermal annealing on the structural and electrical properties of Na-doped ZnMgO ï¬lms. Applied Surface Science, 2011, 257, 5927-5930.	3.1	11
76	Localized exciton emission from ZnO nanocrystalline films. Journal of Applied Physics, 2010, 107, 053524.	1.1	10
77	Synthesis and Characterization of Ultrathin Tinâ€Doped Zinc Oxide Nanowires. European Journal of Inorganic Chemistry, 2012, 2012, 4268-4272.	1.0	10
78	Comparative study of encapsulated solution-processed zinc oxide ultraviolet photodetectors with different contacts. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2184-2188.	0.8	9
79	Electrophoretic deposited oxide thin films as charge transporting interlayers for solution-processed optoelectronic devices: the case of ZnO nanocrystals. RSC Advances, 2015, 5, 8216-8222.	1.7	9
80	Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159.	2.7	9
81	Thiol Modification Enables ZnO-Nanocrystal Films with Atmosphere-Independent Conductance. Journal of Physical Chemistry C, 2021, 125, 20022-20027.	1.5	9
82	Solution-Processed Organic-Inorganic Hybrid Perovskites: A Class of Dream Materials Beyond Photovoltaic Applications. Acta Chimica Sinica, 2015, 73, 171.	0.5	9
83	Ligand Exchange of Colloidal ZnO Nanocrystals from the High Temperature and Nonaqueous Approach. Nano-Micro Letters, 2013, 5, 274-280.	14.4	8
84	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	5.1	8
85	Vertical phase segregation of hybrid poly(3-hexylthiophene) and fullerene derivative composites controlled via velocity of solvent drying. Semiconductor Science and Technology, 2011, 26, 034009.	1.0	7
86	Doped Colloidal ZnO Nanocrystals. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	7
87	Synthesis of Highly Monodisperse Cu ₂ O Nanocrystals and Their Applications as Holeâ€Transporting Layers in Solutionâ€Processed Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 14767-14770.	1.7	7
88	Solvent-Vapor Atmosphere Controls the in Situ Crystallization of Perovskites. , 2021, 3, 1172-1180.		7
89	A quantitative study of chemical kinetics for the synthesis of doped oxide nanocrystals using FTIR. Scientific Reports, 2015, 4, 4353.	1.6	6
90	Synthesis and Characterization of Highly Faceted (Zn,Cd)O Nanorods with Nonhexagonal Cross Sections. Crystal Growth and Design, 2009, 9, 5043-5048.	1.4	5

Yizheng Jin

#	Article	IF	CITATIONS
91	Epitaxial growth of large-grain-size ferromagnetic monolayer CrI ₃ for valley Zeeman splitting enhancement. Nanoscale, 2021, 13, 2955-2962.	2.8	5
92	Synthesis of Cuâ€Modified Nickel Oxide Nanocrystals and Their Applications as Holeâ€Injection layers for Quantumâ€Dot Lightâ€Emitting Diodes. Chemistry - A European Journal, 2021, 27, 11298-11302.	1.7	5
93	Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Research, 2022, 15, 7453-7459.	5.8	5
94	Multifunctional ZnO interfaces with hierarchical micro- andÂnanostructures: bio-inspiration from the compound eyes ofÂbutterflies. Applied Physics A: Materials Science and Processing, 2010, 100, 57-61.	1.1	4
95	Effects of oxygen plasma treatment on the surface properties of Ga-doped ZnO thin films. Applied Physics A: Materials Science and Processing, 2014, 114, 509-513.	1.1	4
96	Rational synthesis and characterization of heterostructures of ZnO nanocombs with (Zn,Cd)O nanocaps. Journal Physics D: Applied Physics, 2008, 41, 115410.	1.3	3
97	Perovskite Solar Cells: Hot-Electron Injection in a Sandwiched TiOx-Au-TiOxStructure for High-Performance Planar Perovskite Solar Cells (Adv. Energy Mater. 10/2015). Advanced Energy Materials, 2015, 5, .	10.2	3
98	Plasmonic Metal Oxide Nanocrystals via Surface Anchoring of Redox-Active Phosphorus Species. Chemistry of Materials, 2021, 33, 5290-5297.	3.2	3
99	Low-temperature and solution-processed indium tin oxide films and their applications in flexible transparent capacitive pressure sensors. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	2
100	Materials Chemistry at Zhejiang University. Advanced Materials, 2017, 29, 1700805.	11.1	2
101	An important step towards commercialization of quantum-dot light-emitting diode displays. Science China Chemistry, 2017, 60, 1324-1325.	4.2	2
102	Thin Films: Ethanedithiol Treatment of Solution-Processed ZnO Thin Films: Controlling the Intragap States of Electron Transporting Interlayers for Efficient and Stable Inverted Organic Photovoltaics (Adv. Energy Mater. 5/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
103	Synthesis and characterization of ultrathin single-crystalline cerium oxide nanorods. , 2010, , .		0
104	Optoelectronic Devices: Lowâ€Temperature Combustionâ€Synthesized Nickel Oxide Thin Films as Holeâ€Transport Interlayers for Solutionâ€Processed Optoelectronic Devices (Adv. Energy Mater. 6/2014). Advanced Energy Materials, 2014, 4, .	10.2	0
105	Syntheses and characterizations of alloyed Co x Ni1â^'x O nanocrystals. Journal of Zhejiang University: Science A, 2017, 18, 306-312.	1.3	0
106	30.1: Invited Paper: Towards Highâ€Performance Solutionâ€Processed Lightâ€Emitting Didoes Based on Quantum Dots. Digest of Technical Papers SID International Symposium, 2021, 52, 407-407.	0.1	0