List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3585237/publications.pdf Version: 2024-02-01

DEPI TOMOS

#	Article	IF	CITATIONS
1	Fine scale measurement and mapping of uranium in soil solution in soil and plant-soil microcosms, with special reference to depleted uranium. Plant and Soil, 2013, 368, 471-482.	3.7	8
2	Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FIFFF-ICP-MS). Journal of Environmental Monitoring, 2012, 14, 782.	2.1	14
3	Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Science, 2011, 180, 709-715.	3.6	42
4	Correlation Network Analysis reveals a sequential reorganization of metabolic and transcriptional states during germination and gene-metabolite relationships in developing seedlings of Arabidopsis. BMC Systems Biology, 2010, 4, 62.	3.0	52
5	Changes in antioxidant compounds in white cabbage during winter storage. Postharvest Biology and Technology, 2009, 52, 173-179.	6.0	69
6	Plant Metabolites and Nutritional Quality of Vegetables. Journal of Food Science, 2008, 73, R48-65.	3.1	232
7	Testing the assertion that †local food is best': the challenges of an evidence-based approach. Trends in Food Science and Technology, 2008, 19, 265-274.	15.1	291
8	Components of Arabidopsis Defense- and Ethylene-Signaling Pathways Regulate Susceptibility to Cauliflower mosaic virus by Restricting Long-Distance Movement. Molecular Plant-Microbe Interactions, 2007, 20, 659-670.	2.6	75
9	Longâ€distance movement of Cauliflower mosaic virus and host defence responses in Arabidopsis follow a predictable pattern that is determined by the leaf orthostichy. New Phytologist, 2007, 175, 707-717.	7.3	25
10	The effect of gibberellic acid on the response of leaf extension to low temperature. Plant, Cell and Environment, 2006, 29, 1329-1337.	5.7	7
11	Sugar concentrations along and across the Ricinus communis L. hypocotyl measured by single cell sampling analysis. Planta, 2006, 224, 1303-1314.	3.2	17
12	Turgor, solute import and growth in maize roots treated with galactose. Functional Plant Biology, 2004, 31, 1095.	2.1	24
13	Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. Journal of Experimental Botany, 2003, 54, 489-494.	4.8	52
14	Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. Journal of Experimental Botany, 2003, 54, 325-334.	4.8	18
15	Rubisco Small Subunit, Chlorophylla/b-Binding Protein and Sucrose:Fructan-6-Fructosyl Transferase Gene Expression and Sugar Status in Single Barley Leaf Cells in Situ. Cell Type Specificity and Induction by Light. Plant Physiology, 2002, 130, 1335-1348.	4.8	44
16	Effect of Elevated Systemic Concentrations of Ammonia and Urea on the Metabolite and Ionic Composition of Oviductal Fluid in Cattle1. Biology of Reproduction, 2002, 66, 1797-1804.	2.7	66
17	Distribution of actin gene isoforms in the Arabidopsis leaf measured in microsamples from intact individual cells. Planta, 2002, 215, 287-292.	3.2	24
18	Changes in osmotic and turgor pressure in response to sugar accumulation in barley source leaves. Planta, 2002, 215, 210-219.	3.2	30

#	Article	IF	CITATIONS
19	Cell sampling and analysis (SiCSA): metabolites measured at single cell resolution. Journal of Experimental Botany, 2001, 52, 623-630.	4.8	57
20	Single cell analysis technique for comparison of specific mRNA abundance in plant cells. Journal of Plant Physiology, 2001, 158, 1089-1092.	3.5	14
21	Carbon allocation and sugar status in individual cells of barley leaves affects expression of Sucrose: Fructan 6-Fructosyltransferase gene. Annals of Applied Biology, 2001, 138, 27-32.	2.5	21
22	The transâ€ŧissue pathway and chemical fate of 14 C photoassimilate in carrot taproot. New Phytologist, 2000, 147, 299-306.	7.3	10
23	What makes plants different? Principles of extracellular matrix function in â€~soft' plant tissues. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2000, 125, 151-167.	1.8	36
24	The plant cell pressure probe. Biotechnology Letters, 2000, 22, 437-442.	2.2	33
25	The Mechanic State of "Inner Tissue―in the Growing Zone of Sunflower Hypocotyls and the Regulation of Its Growth Rate Following Excision. Plant Physiology, 2000, 123, 605-612.	4.8	35
26	Elemental propagation of calcium signals in response-specific patterns determined by environmental stimulus strength. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1932-1937.	7.1	56
27	Tissue distribution of primary metabolism between epidermal, mesophyll and parenchymatous bundle sheath cells in barley leaves. Functional Plant Biology, 2000, 27, 747.	2.1	17
28	Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution. Journal of Experimental Botany, 2000, 51, 567-577.	4.8	32
29	Identification of a New Glucosinolate-Rich Cell Type in Arabidopsis Flower Stalk. Plant Physiology, 2000, 124, 599-608.	4.8	229
30	THE PRESSURE PROBE: A Versatile Tool in Plant Cell Physiology. Annual Review of Plant Biology, 1999, 50, 447-472.	14.3	195
31	Determination of inorganic cations and anions in single plant cells by capillary zone electrophoresis. Journal of Chromatography A, 1998, 809, 231-239.	3.7	42
32	Carbohydrates in Individual Cells of Epidermis, Mesophyll, and Bundle Sheath in Barley Leaves with Changed Export or Photosynthetic Rate. Plant Physiology, 1998, 118, 1525-1532.	4.8	70
33	Genetic dissection of root growth in rice (Oryza sativa L.) I: a hydrophonic screen. Theoretical and Applied Genetics, 1997, 95, 132-142.	3.6	124
34	Genetic dissection of root growth in rice (Oryza sativa L.). II: mapping quantitative trait loci using molecular markers. Theoretical and Applied Genetics, 1997, 95, 143-152.	3.6	187
35	Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytologist, 1997, 137, 83-91.	7.3	111
36	Patterns of solute in individual mesophyll, bundle sheath and epidermal cells of barley leaves induced to accumulate carbohydrate. New Phytologist, 1997, 136, 97-104.	7.3	17

#	Article	IF	CITATIONS
37	Turgor-regulation during extension growth and osmotic stress of maize roots. An example of single-cell mapping. , 1997, , 11-21.		9
38	The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. Journal of Experimental Botany, 1996, 47, 1413-1426.	4.8	84
39	Turgor-regulation during extension growth and osmotic stress of maize roots. An example of single-cell mapping. Plant and Soil, 1996, 187, 11-21.	3.7	41
40	The History of Tissue Tension. Annals of Botany, 1996, 77, 657-665.	2.9	48
41	Cellular and subcellular compartmentation of sulphate in leaves in relation to low sulphur mobility. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 63-65.	0.4	6
42	Stimulation and inhibition of pine root growth by osmotic stress. New Phytologist, 1995, 130, 169-175.	7.3	33
43	Leaf illumination and root cooling inhibit bean leaf expansion by decreasing turgor pressure. Journal of Experimental Botany, 1994, 45, 415-422.	4.8	22
44	Biophysical and biochemical control of cell expansion in roots and leaves. Journal of Experimental Botany, 1994, 45, 1721-1731.	4.8	71
45	Concentrations of inorganic and organic solutes in extracts from individual epidermal, mesophyll and bundle-sheath cells of barley leaves. Planta, 1994, 192, 310.	3.2	90
46	Ion distribution in cereal leaves: pathways and mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 341, 75-86.	4.0	64
47	Carbon Import into Developing Ovules ofPisum sativum: The Role of the Water Relations of the Seed Coat. Journal of Experimental Botany, 1993, 44, 937-945.	4.8	17
48	Xyloglucan Endotransglycosylase Activity, Microfibril Orientation and the Profiles of Cell Wall Properties Along Growing Regions of Maize Roots. Journal of Experimental Botany, 1993, 44, 1281-1289.	4.8	155
49	Measurement of Gradients of Water Potential in Elongating Pea Stem by Pressure Probe and Picolitre Osmometry. Journal of Experimental Botany, 1992, 43, 1325-1331.	4.8	36
50	Incomplete turgor adjustment in Cladophora rupestrisunder fluctuating salinity regimes. Estuarine, Coastal and Shelf Science, 1992, 34, 413-427.	2.1	11
51	Life without water. Current Biology, 1992, 2, 594-596.	3.9	16
52	Turgor, Growth and Rheological Gradients of Wheat Roots Following Osmotic Stress. Journal of Experimental Botany, 1991, 42, 1043-1049.	4.8	95
53	Concentrations of Vacuolar Inorganic Ions in Individual Cells of Intact Wheat Leaf Epidermis. Journal of Experimental Botany, 1991, 42, 305-309.	4.8	44
54	Extension growth in a barley mutant with reduced sensitivity to low temperature. New Phytologist, 1990, 115, 617-623.	7.3	15

#	Article	IF	CITATIONS
55	Biophysics of the Inhibition of the Growth of Maize Roots by Lowered Temperature. Plant Physiology, 1990, 93, 222-230.	4.8	94
56	Measurement of Yield Threshold and Cell Wal Extensibility of Intact Wheat Roots under Different Ionic, Osmotic and Temperature Treatments. Journal of Experimental Botany, 1990, 41, 669-675.	4.8	55
57	Radial Turgor Pressure Profiles in Growing and Mature Zones of Wheat Roots—A Modification of the Pressure Probe. Journal of Experimental Botany, 1989, 40, 567-571.	4.8	45
58	Cell expansion rate, temperature and turgor pressure in growing leaves of Lolium temulentum L New Phytologist, 1989, 112, 1-5.	7.3	48
59	Extraction and analysis of sap from individual wheat leaf cells: the effect of sampling speed on the osmotic pressure of extracted sap. Plant, Cell and Environment, 1989, 12, 919-926.	5.7	71
60	The integration of whole-root and cellular hydraulic conductivities in cereal roots. Planta, 1988, 174, 1-7.	3.2	55
61	Control of wheat root growth. The effects of excision on growth, wall rheology and root anatomy. Planta, 1988, 176, 399-405.	3.2	24
62	Turgor Pressure and Phototropism inSinapis albaL. Seedlings. Journal of Experimental Botany, 1988, 39, 291-299.	4.8	20
63	Control of Wheat Root Elongation Growth. Journal of Experimental Botany, 1987, 38, 948-959.	4.8	67
64	The regulation of turgor pressure during sucrose mobilisation and salt accumulation by excised storage-root tissue of red beet. Planta, 1987, 170, 353-361.	3.2	40
65	The effect of abscisic acid on cell turgor pressures, solute content and growth of wheat roots. Planta, 1987, 170, 257-262.	3.2	66
66	Leaf Diffusive Conductance and Tap Root Cell Turgor Pressure of Sugarbeet. Plant, Cell and Environment, 1987, 10, 735-740.	5.7	10
67	Turgor Regulation of Sucrose Transport in Sugar Beet Taproot Tissue. Plant Physiology, 1986, 81, 478-481.	4.8	119
68	Salt tolerance in the halophyte Suaeda maritima L. Dum Planta, 1985, 165, 392-396.	3.2	97
69	A Comparison of Methods for Measuring Turgor Pressures and Osmotic Pressures of Cells of Red Beet Storage Tissue. Journal of Experimental Botany, 1984, 35, 1675-1683.	4.8	50
70	Water-relation parameters of epidermal and cortical cells in the primary root ofTriticum aestivum L Planta, 1983, 158, 230-236.	3.2	65
71	An attempt to use isolated vacuoles to determine the distribution of sodium and potassium in cells of storage roots of red beet (Beta vulgaris L.). Planta, 1983, 159, 469-475.	3.2	41
72	The influence of abscisic acid on the water relations of leaf epidermal cells of Rhoeo discolor. Plant Science Letters, 1983, 31, 253-259.	1.8	20

#	Article	IF	CITATIONS
73	Membrane Lipids and Phosphatidyl Choline Turnover in Embryos from Germinating Low and High Vigour Wheat (Triticum aestivum). Journal of Experimental Botany, 1982, 33, 631-642.	4.8	11
74	Water Relations of Leaf Epidermal Cells of <i>Tradescantia virginiana</i> . Plant Physiology, 1981, 68, 1135-1143.	4.8	89