
Stephano S Mello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3585014/publications.pdf Version: 2024-02-01

STEPHANO S MELLO

#	Article	IF	CITATIONS
1	Unravelling mechanisms of p53-mediated tumour suppression. Nature Reviews Cancer, 2014, 14, 359-370.	28.4	1,090
2	Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression. Cell, 2011, 145, 571-583.	28.9	443
3	Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes and Development, 2013, 27, 1016-1031.	5.9	353
4	Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nature Medicine, 2015, 21, 1163-1171.	30.7	349
5	<i>Neat1</i> is a p53-inducible lincRNA essential for transformation suppression. Genes and Development, 2017, 31, 1095-1108.	5.9	179
6	Deciphering p53 signaling in tumor suppression. Current Opinion in Cell Biology, 2018, 51, 65-72.	5.4	170
7	Transcriptional Profiles of the Human Pathogenic Fungus Paracoccidioides brasiliensis in Mycelium and Yeast Cells. Journal of Biological Chemistry, 2005, 280, 24706-24714.	3.4	169
8	A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell, 2017, 32, 460-473.e6.	16.8	142
9	Gene Expression Profiles in Radiation Workers Occupationally Exposed to Ionizing Radiation. Journal of Radiation Research, 2009, 50, 61-71.	1.6	73
10	Gene Expression Profiles in Human Lymphocytes Irradiated In Vitro with Low Doses of Gamma Rays. Radiation Research, 2007, 168, 650.	1.5	59
11	Gene expression profiles in human cells submitted to genotoxic stress. Mutation Research - Reviews in Mutation Research, 2003, 544, 403-413.	5.5	53
12	Not all p53 gain-of-function mutants are created equal. Cell Death and Differentiation, 2013, 20, 855-857.	11.2	52
13	The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nature Communications, 2021, 12, 4308.	12.8	45
14	Zmat3 Is a Key Splicing Regulator in the p53 Tumor Suppression Program. Molecular Cell, 2020, 80, 452-469.e9.	9.7	44
15	Immunosuppressive therapy modulates T lymphocyte gene expression in patients with systemic lupus erythematosus. Immunology, 2004, 113, 99-105.	4.4	27
16	p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. Journal of Cell Biology, 2020, 219, .	5.2	26
17	Profiling Meta-Analysis Reveals Primarily Gene Coexpression Concordance between Systemic Lupus Erythematosus and Rheumatoid Arthritis. Annals of the New York Academy of Sciences, 2007, 1110, 33-46.	3.8	25
18	Ionizing radiation-induced gene expression changes in TP53 proficient and deficient glioblastoma cell lines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 756, 46-55.	1.7	24

STEPHANO S MELLO

#	Article	IF	CITATIONS
19	The p53 Target Gene <i>SIVA</i> Enables Non–Small Cell Lung Cancer Development. Cancer Discovery, 2015, 5, 622-635.	9.4	24
20	Comprehensive gene expression profiling in lungs of mice infected with <i>Mycobacterium tuberculosis</i> following DNAhsp65 immunotherapy. Journal of Gene Medicine, 2009, 11, 66-78.	2.8	22
21	The non-coding RNA BC1 is down-regulated in the hippocampus of Wistar Audiogenic Rat (WAR) strain after audiogenic kindling. Brain Research, 2011, 1367, 114-121.	2.2	22
22	Differential gene expression of peripheral blood mononuclear cells from rheumatoid arthritis patients may discriminate immunogenetic, pathogenic and treatment features. Immunology, 2009, 127, 365-372.	4.4	20
23	Dynamin impacts homology-directed repair and breast cancer response to chemotherapy. Journal of Clinical Investigation, 2018, 128, 5307-5321.	8.2	20
24	Transcriptional changes in U343 MG-a glioblastoma cell line exposed to ionizing radiation. Human and Experimental Toxicology, 2008, 27, 919-929.	2.2	19
25	Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line. Genetics and Molecular Biology, 2010, 33, 159-168.	1.3	17
26	The Long Noncoding RNA <i>NEAT1</i> Promotes Sarcoma Metastasis by Regulating RNA Splicing Pathways. Molecular Cancer Research, 2020, 18, 1534-1544.	3.4	16
27	Gene Expression Profiles Stratified according to Type 1 Diabetes Mellitus Susceptibility Regions. Annals of the New York Academy of Sciences, 2008, 1150, 282-289.	3.8	13
28	Shared and Unique Gene Expression in Systemic Lupus Erythematosus Depending on Disease Activity. Annals of the New York Academy of Sciences, 2009, 1173, 493-500.	3.8	13
29	Chromosomal rearrangements involving telomeric DNA sequences in Balb/3T3 cells transfected with the Ha-ras oncogene. Mutagenesis, 2002, 17, 67-72.	2.6	11
30	Hybridization signatures during thymus ontogeny reveals modulation of genes coding for T-cell signaling proteins. Molecular Immunology, 2005, 42, 1043-1048.	2.2	9
31	Delayed effects of exposure to a moderate radiation dose on transcription profiles in human primary fibroblasts. Environmental and Molecular Mutagenesis, 2011, 52, 117-129.	2.2	9
32	Neat-en-ing up our understanding of p53 pathways in tumor suppression. Cell Cycle, 2018, 17, 1527-1535.	2.6	9
33	Hybridization signatures of gamma-irradiated murine fetal thymus organ culture (FTOC) reveal modulation of genes associated with T-cell receptor V(D)J recombination and DNA repair. Molecular Immunology, 2006, 43, 464-472.	2.2	7
34	Metabolism Genes Are among the Differentially Expressed Ones Observed in Lymphomononuclear Cells of Recently Diagnosed Type 1 Diabetes Mellitus Patients. Annals of the New York Academy of Sciences, 2006, 1079, 171-176.	3.8	6
35	Using cDNA microarrays to identify human CD19+ B cell gene products (ESTs) originated from systemic lupus erythematosus susceptibility loci. Autoimmunity Reviews, 2006, 5, 319-323.	5.8	5
36	ls HLA Class II Profile Relevant for the Study of Large-Scale Differentially Expressed Genes in Type 1 Diabetes Mellitus Patients?. Annals of the New York Academy of Sciences, 2006, 1079, 305-309.	3.8	4

STEPHANO S MELLO

#	Article	IF	CITATIONS
37	cDNA microarray analysis of cyclosporin A (CsA)-treated human peripheral blood mononuclear cells reveal modulation of genes associated with apoptosis, cell-cycle regulation and DNA repair. Molecular and Cellular Biochemistry, 2007, 304, 235-241.	3.1	3
38	Counting the Minutes. ELife, 2020, 9, .	6.0	3
39	Changes in the gene expression profiling of the thymus in response to fibrosarcoma growth. Molecular and Cellular Biochemistry, 2005, 276, 81-88.	3.1	1
40	Genomic Instability:Signaling Pathways Orchestrating the Responsesto Ionizing Radiation and Cisplatin. Genome Dynamics and Stability, 2005, , 423-452.	1.1	1
41	Abstract B12: Deciphering mechanisms of p53-mediated pancreatic cancer suppression , 2012, , .		0
42	Abstract IA4: Deconstructing p53 pathways in vivo. , 2013, , .		0
43	Abstract 1628: MAFF, a new hypoxia target gene involving tumor invasion and metastasis. , 2016, , .		Ο
44	Abstract PR07: Deconstructing p53 transcriptional networks in pancreatic cancer suppression. , 2016, , .		0
45	Abstract A45: Neat1 is a p53-inducible lincRNA important for pancreatic cancer suppression. , 2016, , .		0
46	Abstract IA07: Deconstructing p53 pathways in tumor suppression. , 2018, , .		0