
Ricardo M Holdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3585003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Another Continental Vulture Crisis: Africa's Vultures Collapsing toward Extinction. Conservation Letters, 2016, 9, 89-97.	2.8	260
2	A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C. PLoS Biology, 2009, 7, e1000210.	2.6	232
3	Opposing Rainfall and Plant Nutritional Gradients Best Explain the Wildebeest Migration in the Serengeti. American Naturalist, 2009, 173, 431-445.	1.0	197
4	Functional mismatch in a bumble bee pollination mutualism under climate change. Science, 2015, 349, 1541-1544.	6.0	181
5	Grazers, browsers, and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecological Applications, 2009, 19, 95-109.	1.8	156
6	ELEPHANTS, FIRE, AND FROST CAN DETERMINE COMMUNITY STRUCTURE AND COMPOSITION IN KALAHARI WOODLANDS. , 2007, 17, 558-568.		93
7	Plant productivity and soil nitrogen as a function of grazing, migration and fire in an African savanna. Journal of Ecology, 2007, 95, 115-128.	1.9	86
8	Road will ruin Serengeti. Nature, 2010, 467, 272-273.	13.7	86
9	Predicted Impact of Barriers to Migration on the Serengeti Wildebeest Population. PLoS ONE, 2011, 6, e16370.	1.1	81
10	Woody plant damage by African elephants in relation to leaf nutrients in western Zimbabwe. Journal of Tropical Ecology, 2003, 19, 189-196.	0.5	80
11	Challenging the maximum rooting depth paradigm in grasslands and savannas. Functional Ecology, 2015, 29, 739-745.	1.7	61
12	Termite Mounds as Nutrient-Rich Food Patches for Elephants. Biotropica, 2004, 36, 231-239.	0.8	59
13	Comment on $\hat{a} \in \infty$ The extent of forest in dryland biomes $\hat{a} \in \mathbb{R}$ Science, 2017, 358, .	6.0	57
14	Revisiting the Two-Layer Hypothesis: Coexistence of Alternative Functional Rooting Strategies in Savannas. PLoS ONE, 2013, 8, e69625.	1.1	56
15	Elephant damage, not fire or rainfall, explains mortality of overstorey trees in Serengeti. Journal of Ecology, 2016, 104, 409-418.	1.9	55
16	Elephant herbivory, frost damage and topkill in Kalahari sand woodland savanna trees. Journal of Vegetation Science, 2006, 17, 509-518.	1.1	51
17	Stem Mortality Following Fire in Kalahari Sand Vegetation: Effects of Frost,Prior Damage, and Tree Neighbourhoods. Plant Ecology, 2005, 180, 77-86.	0.7	42
18	Grass competition overwhelms effects of herbivores and precipitation on early tree establishment in Serengeti. Journal of Ecology, 2019, 107, 216-228.	1.9	42

RICARDO M HOLDO

#	Article	IF	CITATIONS
19	Floristic evidence for alternative biome states in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28183-28190.	3.3	41
20	Anthropogenic modifications to fire regimes in the wider Serengetiâ€Mara ecosystem. Global Change Biology, 2019, 25, 3406-3423.	4.2	38
21	Functional attributes of savanna soils: contrasting effects of tree canopies and herbivores on bulk density, nutrients and moisture dynamics. Journal of Ecology, 2014, 102, 1171-1182.	1.9	32
22	Rootâ€niche separation between savanna trees and grasses is greater on sandier soils. Journal of Ecology, 2020, 108, 2298-2308.	1.9	31
23	Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna. Oecologia, 2018, 186, 269-280.	0.9	29
24	Fuelwood sustainability revisited: integrating size structure and resprouting into a spatially realistic fuelshed model. Journal of Applied Ecology, 2016, 53, 1766-1776.	1.9	28
25	Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. Journal of Vegetation Science, 2012, 23, 352-360.	1.1	26
26	Responses to alternative rainfall regimes and antipoaching in a migratory system. Ecological Applications, 2010, 20, 381-397.	1.8	24
27	Herbivore–vegetation feedbacks can expand the range of savanna persistence: insights from a simple theoretical model. Oikos, 2013, 122, 441-453.	1.2	24
28	Precipitation, fire and demographic bottleneck dynamics in Serengeti tree populations. Landscape Ecology, 2014, 29, 1613-1623.	1.9	23
29	Transpiration dynamics support resource partitioning in African savanna trees and grasses. Ecology, 2015, 96, 1466-1472.	1.5	23
30	Compositional decoupling of savanna canopy and understory tree communities in Serengeti. Journal of Vegetation Science, 2015, 26, 385-394.	1.1	21
31	Precipitation and elephants, not fire, shape tree community composition in Serengeti National Park, Tanzania. Biotropica, 2016, 48, 476-482.	0.8	21
32	Tree–grass competition varies across select savanna tree species: a potential role for rooting depth. Plant Ecology, 2015, 216, 577-588.	0.7	20
33	Rooting depth and above-ground community composition in Kalahari sand woodlands in western Zimbabwe. Journal of Tropical Ecology, 2008, 24, 169-176.	0.5	19
34	A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography, 2019, 46, 454-465.	1.4	17
35	Trade-offs between growth and maturation: the cost of reproduction for surviving environmental extremes. Oecologia, 2015, 178, 723-732.	0.9	16
36	Structural diversity and tree density drives variation in the biodiversity–ecosystem function relationship of woodlands andÂsavannas. New Phytologist, 2021, 232, 579-594.	3.5	16

RICARDO M HOLDO

#	Article	IF	CITATIONS
37	Spatial transitions in tree cover are associated with soil hydrology, but not with grass biomass, fire frequency, or herbivore biomass in Serengeti savannahs. Journal of Ecology, 2020, 108, 586-597.	1.9	13
38	Delayed effects of fire on habitat use by large herbivores in Acacia drepanolobium savanna. African Journal of Ecology, 2005, 43, 155-157.	0.4	12
39	Inferring animal population distributions from individual tracking data: theoretical insights and potential pitfalls. Journal of Animal Ecology, 2013, 82, 175-181.	1.3	12
40	Edaphic, Nutritive, and Species Assemblage Differences between Hotspots and Matrix Vegetation: Two African Case Studies. Biotropica, 2014, 46, 387-394.	0.8	11
41	Savannas are vital but overlooked carbon sinks. Science, 2022, 375, 392-392.	6.0	11
42	Competitive response of savanna tree seedlings to C ₄ grasses is negatively related to photosynthesis rate. Biotropica, 2017, 49, 774-777.	0.8	10
43	Spatial relationship between elephant and sodium concentration of water disappears as density increases in Hwange National Park, Zimbabwe. Journal of Tropical Ecology, 2007, 23, 725-728.	0.5	9
44	Fire, grazers, and browsers interact with grass competition to determine tree establishment in an African savanna. Ecology, 2022, 103, e3715.	1.5	9
45	Seed production, infestation, and viability in Acacia tortilis (synonym: Vachellia tortilis) and Acacia robusta (synonym: Vachellia robusta) across the Serengeti rainfall gradient. Plant Ecology, 2017, 218, 909-922.	0.7	7
46	Tree architecture as a predictor of growth and mortality after an episode of red oak decline in the Ozark Highlands of Missouri, U.S.A Canadian Journal of Forest Research, 2014, 44, 1005-1012.	0.8	6
47	Root vascular traits differ systematically between African savanna tree and grass species, with implications for water use. American Journal of Botany, 2021, 108, 83-90.	0.8	6
48	Effects of fire history and N and P fertilization on seedling biomass, Specific Leaf Area, and root:shoot ratios in a South African savannah. South African Journal of Botany, 2013, 86, 5-8.	1.2	5
49	Sapling growth gradients interact with homogeneous disturbance regimes to explain savanna tree cover discontinuities. Ecological Monographs, 2022, 92, .	2.4	5
50	Strong competitive effects of African savanna C4 grasses on tree seedlings do not support rooting differentiation. Journal of Tropical Ecology, 2018, 34, 65-73.	0.5	3
51	Feedbacks between forest structure and an opportunistic fungal pathogen. Journal of Ecology, 2021, 109, 4092-4102.	1.9	3
52	Foliar temperature as a tool for quantifying whole-plant transpiration in tree seedlings under laboratory and greenhouse conditions. Plant Ecology, 2020, 221, 283-293.	0.7	1
53	Trophic Interactions Drive Tree Establishment in the Serengeti Ecosystem. Bulletin of the Ecological Society of America, 2022, 103, .	0.2	1
54	Interspecific variation in postâ€disturbance growth responses of a savanna tree community and its implications for escaping the fire trap. Biotropica, 2021, 53, 896-905.	0.8	0

#	Article	IF	CITATIONS
55	Savanna tree abundance and spatial patterns are strongly associated with river networks in Serengeti National Park, Tanzania. Landscape Ecology, 0, , .	1.9	0