
Simon M Bryant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584796/publications.pdf Version: 2024-02-01

SIMON M ROVANT

#	Article	IF	CITATIONS
1	Ion currents, action potentials, and noradrenergic responses in rat pulmonary vein and left atrial cardiomyocytes. Physiological Reports, 2020, 8, e14432.	0.7	4
2	Cardiacâ€specific overexpression of caveolinâ€3 preserves tâ€tubular I Ca during heart failure in mice. Experimental Physiology, 2019, 104, 654-666.	0.9	11
3	Caveolin 3â€dependent loss of tâ€ŧubular <i>I</i> _{Ca} during hypertrophy and heart failure in mice. Experimental Physiology, 2018, 103, 652-665.	0.9	23
4	The Effects of Aging on the Regulation of T-Tubular ICa by Caveolin in Mouse Ventricular Myocytes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 711-719.	1.7	16
5	Loss of caveolin-3-dependent regulation of <i>I</i> _{Ca} in rat ventricular myocytes in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H521-H529.	1.5	12
6	Caveolin-3 KO disrupts t-tubule structure and decreases t-tubular <i>I</i> _{Ca} density in mouse ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1101-H1111.	1.5	31
7	Reduced density and altered regulation of rat atrial L-type Ca ²⁺ current in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H384-H391.	1.5	9
8	Sarcolemmal distribution of <i>I</i> _{Ca} and <i>I</i> _{NCX} and Ca ²⁺ autoregulation in mouse ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H190-H199.	1.5	14
9	Atrial-ventricular differences in rabbit cardiac voltage-gated Na + currents: Basis for atrial-selective block by ranolazine. Heart Rhythm, 2017, 14, 1657-1664.	0.3	17
10	Cholesterol depletion does not alter the capacitance or Ca handling of the surface or tâ€ŧubule membranes in mouse ventricular myocytes. Physiological Reports, 2017, 5, e13500.	0.7	9
11	Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H262-H268.	1.5	14
12	Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. Journal of Molecular and Cellular Cardiology, 2015, 86, 23-31.	0.9	55
13	Inhibition of a TREK-like K+ channel current by noradrenaline requires both β1- and β2-adrenoceptors in rat atrial myocytes. Cardiovascular Research, 2014, 104, 206-215.	1.8	13
14	Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2014, 68, 47-55.	0.9	41