
Nuria MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584793/publications.pdf Version: 2024-02-01

Νιίσια Μαστζω

#	Article	IF	CITATIONS
1	Heterogeneous catalytic direct amide bond formation. Catalysis Communications, 2022, 164, 106420.	3.3	9
2	Catalytic activity of a CuGHK peptide-based porous material. Catalysis Science and Technology, 2021, 11, 6053-6057.	4.1	2
3	Supported Single Atom Catalysts for Câ^'H Activation: Selective Câ^'H Oxidations, Dehydrogenations and Oxidative Câ^'H/Câ^'H Couplings. ChemCatChem, 2021, 13, 2751-2765.	3.7	15
4	Metal-organic frameworks-based catalysts for biomass valorization. , 2020, , 187-198.		6
5	Diffusion Control in Single-Site Zinc Reticular Amination Catalysts. Inorganic Chemistry, 2020, 59, 18168-18173.	4.0	2
6	Design of Hierarchical Architectures in Metal–Oganic Frameworks for Catalysis and Adsorption. Chemistry of Materials, 2020, 32, 10268-10295.	6.7	68
7	MOFâ€derived/zeolite hybrid catalyst for the production of light olefins from CO ₂ . ChemCatChem, 2020, 12, 5750-5758.	3.7	23
8	Organic synthesis of high added value molecules with MOF catalysts. Organic and Biomolecular Chemistry, 2020, 18, 8058-8073.	2.8	29
9	Cooperative acid–base bifunctional ordered porous solids in sequential multi-step reactions: MOF <i>vs.</i> mesoporous silica. Catalysis Science and Technology, 2020, 10, 1796-1802.	4.1	11
10	Metal-Organic Framework Derived Metal Oxide Clusters in Porous Aluminosilicates: A Catalyst Design for the Synthesis of Bioactive aza-Heterocycles. ACS Catalysis, 2019, 9, 44-48.	11.2	34
11	Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanolâ€ŧoâ€Olefin Performance. Chemistry - A European Journal, 2018, 24, 14631-14635.	3.3	57
12	lronâ€Containing SSZâ€39 (AEI) Zeolite: An Active and Stable Highâ€Temperature NH ₃ â€SCR Catalyst. ChemCatChem, 2017, 9, 1754-1757.	3.7	49
13	Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Applied Catalysis B: Environmental, 2017, 217, 125-136.	20.2	73
14	Feâ€Containing Zeolites for NH ₃ ‣CR of NO _{<i>x</i>} : Effect of Structure, Synthesis Procedure, and Chemical Composition on Catalytic Performance and Stability. Chemistry - A European Journal, 2017, 23, 13404-13414.	3.3	44
15	Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 2016, 52, 6072-6075.	4.1	80
16	Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents. New Journal of Chemistry, 2016, 40, 4140-4145.	2.8	11
17	Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 2015, 51, 11030-11033.	4.1	95
18	High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 2015, 51, 9965-9968.	4.1	131

#	Article	IF	CITATIONS
19	Organically Modified Saponites: SAXS Study of Swelling and Application in Caffeine Removal. ACS Applied Materials & Interfaces, 2015, 7, 10853-10862.	8.0	58