Jinzeng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Muscle Fibers of Epinephelus coioides by Myostatin Autologous Nucleic Acid Vaccine. International Journal of Molecular Sciences, 2022, 23, 6997.	4.1	1
2	Targeted overexpression of PPARÎ ³ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition. FASEB Journal, 2021, 35, e21308.	0.5	27
3	Identifications of immune-responsive genes for adaptative traits by comparative transcriptome analysis of spleen tissue from Kazakh and Suffolk sheep. Scientific Reports, 2021, 11, 3157.	3.3	9
4	Characterization of the whole transcriptome of spleens from Chinese indigenous breed Ningxiang pig reveals diverse coding and non-coding RNAs for immunity regulation. Genomics, 2021, 113, 2468-2482.	2.9	14
5	Spatiotemporal Regulation and Functional Analysis of Circular RNAs in Skeletal Muscle and Subcutaneous Fat during Pig Growth. Biology, 2021, 10, 841.	2.8	9
6	Integrated Analysis of Liver Transcriptome, miRNA, and Proteome of Chinese Indigenous Breed Ningxiang Pig in Three Developmental Stages Uncovers Significant miRNA–mRNA–Protein Networks in Lipid Metabolism. Frontiers in Genetics, 2021, 12, 709521.	2.3	3
7	Bacteria-induced expression of the pig-derived protegrin-1 transgene specifically in the respiratory tract of mice enhances resistance to airway bacterial infection. Scientific Reports, 2020, 10, 16020.	3.3	3
8	Roles of transcription factor SQUAMOSA promoter binding protein-like gene family in papaya (Carica) Tj ETQqO (0 0 rgBT /C)verlock 10 T 24
9	Enhanced skeletal muscle growth in myostatin-deficient transgenic pigs had improved glucose uptake in stretozotocin-induced diabetes. Transgenic Research, 2020, 29, 253-261.	2.4	5
10	Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway. Biochemistry and Biophysics Reports, 2019, 17, 182-190.	1.3	12
11	mTORC1 Mediates Lysine-Induced Satellite Cell Activation to Promote Skeletal Muscle Growth. Cells, 2019, 8, 1549.	4.1	34
12	Differential Transcriptome Analysis of Early Postnatal Developing <i>Longissimus Dorsi</i> Muscle from Two Pig Breeds Characterized in Divergent Myofiber Traits and Fatness. Animal Biotechnology, 2019, 30, 63-74.	1.5	16
13	Assessment of myoblast circular RNA dynamics and its correlation with miRNA during myogenic differentiation. International Journal of Biochemistry and Cell Biology, 2018, 99, 211-218.	2.8	22
14	Comparative Characterization of the Complete Mitochondrial Genomes of the Three Apple Snails (Gastropoda: Ampullariidae) and the Phylogenetic Analyses. International Journal of Molecular Sciences, 2018, 19, 3646.	4.1	14
	Characterization of the Complete Mitochondrial Cenome Sequences of Three Croabers (Perciformes) Ti FTO01.1	0 784314	1 rgBT /Over

15	2018, 19, 1741.	4.1	32
16	Novel transgenic pigs with enhanced growth and reduced environmental impact. ELife, 2018, 7, .	6.0	59
17	Skeletal Muscle-Specific Overexpression of PGC-1α Induces Fiber-Type Conversion through Enhanced Mitochondrial Respiration and Fatty Acid Oxidation in Mice and Pigs. International Journal of Biological Sciences, 2017, 13, 1152-1162.	6.4	77
18	MicroRNA-95 promotes myogenic differentiation by down-regulation of aminoacyl-tRNA synthase	1.8	9

MicroRNA-95 promotes myogenic differentiation by down-regulation of aminoacyl-tRNA synthase complex-interacting multifunctional protein 2. Oncotarget, 2017, 8, 111356-111368. 1.8 18

JINZENG YANG

#	Article	IF	CITATIONS
19	Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 2015, 5, 14435.	3.3	146
20	RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide. International Journal of Molecular Sciences, 2015, 16, 7976-7994.	4.1	15
21	Functional verification of a porcine myostatin propeptide mutant. Transgenic Research, 2015, 24, 837-845.	2.4	5
22	miRNA Transcriptome of Hypertrophic Skeletal Muscle with Overexpressed Myostatin Propeptide. BioMed Research International, 2014, 2014, 1-19.	1.9	12
23	Enhanced Skeletal Muscle for Effective Glucose Homeostasis. Progress in Molecular Biology and Translational Science, 2014, 121, 133-163.	1.7	78
24	The formation of brown adipose tissue induced by transgenic over-expression of PPARÎ ³ 2. Biochemical and Biophysical Research Communications, 2014, 446, 959-964.	2.1	18
25	Muscle-specific transgenic expression of porcine myostatin propeptide enhances muscle growth in mice. Transgenic Research, 2013, 22, 1011-1019.	2.4	5
26	Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence. PLoS ONE, 2012, 7, e51731.	2.5	30
27	Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation. Biochemical and Biophysical Research Communications, 2011, 416, 289-292.	2.1	14
28	Molecular Characterizations of a Novel Putative DNA-Binding Protein LvDBP23 in Marine Shrimp L. vannamei Tissues and Molting Stages. PLoS ONE, 2011, 6, e19959.	2.5	5
29	Administration of a mutated myostatin propeptide to neonatal mice significantly enhances skeletal muscle growth. Molecular Reproduction and Development, 2010, 77, 76-82.	2.0	29
30	Transgenic overâ€expression of growth differentiation factor 11 propeptide in skeleton results in transformation of the seventh cervical vertebra into a thoracic vertebra. Molecular Reproduction and Development, 2010, 77, 990-997.	2.0	28
31	Identifications of expressed sequence tags from Pacific threadfin (Polydactylus sexfilis) skeletal muscle cDNA library. Aquaculture Research, 2010, 41, 572-578.	1.8	1
32	Coordinated patterns of gene expressions for adult muscle build-up in transgenic mice expressing myostatin propeptide. BMC Genomics, 2009, 10, 305.	2.8	16
33	Decreased expression of calpain and calpastatin mRNA during development is highly correlated with muscle protein accumulation in neonatal pigs. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152, 498-503.	1.8	19
34	Identifications of SUMO-1 cDNA and Its Expression Patterns in Pacific White Shrimp Litopeanaeus vannamei. International Journal of Biological Sciences, 2009, 5, 205-214.	6.4	9
35	Transient transgene transmission to piglets by intrauterine insemination of spermatozoa incubated with DNA fragments. Molecular Reproduction and Development, 2008, 75, 26-32.	2.0	21
36	Enhanced muscle by myostatin propeptide increases adipose tissue adiponectin, PPAR-α, and PPAR-γ expressions. Biochemical and Biophysical Research Communications, 2008, 369, 767-773.	2.1	33

JINZENG YANG

#	Article	IF	CITATIONS
37	Expression patterns of ubiquitin, heat shock protein 70, α-actin and β-actin over the molt cycle in the abdominal muscle of marine shrimpLitopenaeus vannamei. Molecular Reproduction and Development, 2007, 74, 554-559.	2.0	31
38	Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle. Aquaculture, 2006, 261, 688-694.	3.5	85
39	Postnatal expression of myostatin propeptide cDNA maintained high muscle growth and normal adipose tissue mass in transgenic mice fed a high-fat diet. Molecular Reproduction and Development, 2006, 73, 462-469.	2.0	36
40	Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochemical and Biophysical Research Communications, 2005, 337, 248-255.	2.1	161
41	Expression of myostatin pro domain results in muscular transgenic mice. Molecular Reproduction and Development, 2001, 60, 351-361.	2.0	165