Hui Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/35847/publications.pdf

Version: 2024-02-01

		304743	265206
51	1,833 citations	22	42
papers	citations	h-index	g-index
51	51	51	2336
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydrate Polymers, 2018, 183, 102-109.	10.2	195
2	Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose, 2017, 24, 4433-4448.	4.9	149
3	Catalytic Transfer Hydrogenation of Furfural to 2â€Methylfuran and 2â€Methyltetrahydrofuran over Bimetallic Copper–Palladium Catalysts. ChemSusChem, 2016, 9, 3330-3337.	6.8	128
4	Enhanced Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone over a Robust Cu–Ni Bimetallic Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 1322-1331.	6.7	115
5	Synthesis of polymers from organic solvent liquefied biomass: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 3454-3463.	16.4	111
6	Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. Green Chemistry, 2016, 18, 1516-1523.	9.0	83
7	Facile and high-yield synthesis of methyl levulinate from cellulose. Green Chemistry, 2018, 20, 1323-1334.	9.0	81
8	Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Biomacromolecules, 2018, 19, 4565-4575.	5.4	75
9	Insight into Aluminum Sulfateâ€Catalyzed Xylan Conversion into Furfural in a γâ€Valerolactone/Water Biphasic Solvent under Microwave Conditions. ChemSusChem, 2017, 10, 4066-4079.	6.8	72
10	Room-Temperature Dissolution and Mechanistic Investigation of Cellulose in a Tetra-Butylammonium Acetate/Dimethyl Sulfoxide System. ACS Sustainable Chemistry and Engineering, 2016, 4, 2286-2294.	6.7	50
11	Demethylation of Alkali Lignin with Halogen Acids and Its Application to Phenolic Resins. Polymers, 2019, 11, 1771.	4.5	49
12	Chemical Groups and Structural Characterization of Lignin via Thiol-Mediated Demethylation. Journal of Wood Chemistry and Technology, 2014, 34, 122-134.	1.7	47
13	Super-fast degradation of high concentration methyl orange over bifunctional catalyst Fe/Fe3C@C with microwave irradiation. Journal of Hazardous Materials, 2020, 392, 122279.	12.4	47
14	Highly efficient metal salt catalyst for the esterification of biomass derived levulinic acid under microwave irradiation. RSC Advances, 2016, 6, 2106-2111.	3.6	46
15	Preparation of flexible and UV-blocking films from lignin-containing cellulose incorporated with tea polyphenol/citric acid. International Journal of Biological Macromolecules, 2022, 207, 917-926.	7.5	37
16	Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties. European Polymer Journal, 2021, 150, 110389.	5.4	32
17	Highly efficient g-C3N4 supported ruthenium catalysts for the catalytic transfer hydrogenation of levulinic acid to liquid fuel 13-valerolactone. Renewable Energy, 2021, 177, 652-662.	8.9	30
18	Synchronous conversion of lignocellulosic polysaccharides to levulinic acid with synergic bifunctional catalysts in a biphasic cosolvent system. Industrial Crops and Products, 2020, 145, 112084.	5.2	26

#	Article	IF	CITATIONS
19	Influence of alkenyl structures on the epoxidation of unsaturated fatty acid methyl esters and vegetable oils. RSC Advances, 2015, 5, 74783-74789.	3.6	24
20	An Energyâ€Efficient Oneâ€Pot Swelling/Esterification Method to Prepare Cellulose Nanofibers with Uniform Diameter. ChemSusChem, 2018, 11, 3714-3718.	6.8	24
21	Maximizing utilization of poplar wood by microwave-assisted pretreatment with methanol/dioxane binary solvent. Bioresource Technology, 2020, 300, 122657.	9.6	24
22	Transparent films by ionic liquid welding of cellulose nanofibers and polylactide: Enhanced biodegradability in marine environments. Journal of Hazardous Materials, 2021, 402, 124073.	12.4	24
23	Highly Efficient Silica-Supported Peroxycarboxylic Acid for the Epoxidation of Unsaturated Fatty Acid Methyl Esters and Vegetable Oils. ACS Sustainable Chemistry and Engineering, 2016, 4, 3840-3849.	6.7	22
24	Directional synergistic conversion of lignocellulosic biomass with matching-solvents for added-value chemicals. Green Chemistry, 2019, 21, 4951-4957.	9.0	22
25	Polyols from Microwave Liquefied Bagasse and Its Application to Rigid Polyurethane Foam. Materials, 2015, 8, 8496-8509.	2.9	21
26	Modification of Cellulose with Succinic Anhydride in TBAA/DMSO Mixed Solvent under Catalyst-Free Conditions. Materials, 2017, 10, 526.	2.9	21
27	Simple and efficient conversion of cellulose to \hat{I}^3 -valerolactone through an integrated alcoholysis/transfer hydrogenation system using Ru and aluminium sulfate catalysts. Catalysis Science and Technology, 2018, 8, 6252-6262.	4.1	21
28	Plasticized Cellulosic Films by Partial Esterification and Welding in Low-Concentration Ionic Liquid Electrolyte. Biomacromolecules, 2019, 20, 2105-2114.	5.4	19
29	Highly efficient and selectivefractionation strategy for lignocellulosic biomass with recyclable dioxane/ethylene glycol binary solvent. Industrial Crops and Products, 2020, 144, 112038.	5. 2	19
30	Efficient and selective adsorption of cationic dyes with regenerated cellulose. Chemical Physics Letters, 2021, 784, 139104.	2.6	18
31	Hygrothermal aging properties of wood plastic composites made of recycled high density polypropylene as affected by inorganic pigments. Polymer Engineering and Science, 2015, 55, 2127-2132.	3.1	17
32	Extraction and characterization of holocellulose fibers by microwaveâ€assisted selective liquefaction of bamboo. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
33	Swelling and dissolution of cellulose in binary systems of three ionic liquids and three co-solvents. Cellulose, 2021, 28, 4643-4653.	4.9	15
34	Timeâ€ŧemperature superposition principle application to the hygrothermal discoloration of colored highâ€density polypropylene/wood composites. Polymer Composites, 2016, 37, 1016-1020.	4.6	12
35	Preparation and characterization of high-performance activated carbon from papermaking black-liquor at low temperature. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105292.	5.5	12
36	Organosolv fractionation of a lignocellulosic biomass feedstock using a pilot scale microwave-heating reactor. Industrial Crops and Products, 2022, 180, 114700.	5.2	12

#	Article	IF	Citations
37	Highly Efficient and Recyclable Metal Salt Catalyst for the Production of Biodiesel: Toward Greener Process. ChemistrySelect, 2017, 2, 3775-3782.		11
38	Lâ€Tyrosineâ€Pd complex supported on Fe3O4magnetic nanoparticles: A new catalyst for C–C coupling and Synthesis of sulfides. Applied Organometallic Chemistry, 2020, 34, e5256.	3.5	11
39	Collaborative Conversion of Biomass Carbohydrates into Valuable Chemicals: Catalytic Strategy and Mechanism Research. Journal of Agricultural and Food Chemistry, 2020, 68, 13760-13769.	5. 2	11
40	Efficient Niâ€Cu/AC Bimetal Catalyst for Hydrogenolysis of Lignin to Produce Highâ€Valueâ€Added Chemicals. ChemistrySelect, 2020, 5, 10090-10097.	1.5	11
41	Directional and integrated conversion of whole components in biomass for levulinates and phenolics with biphasic system. Bioresource Technology, 2020, 315, 123776.	9.6	10
42	Highly efficient isomerization of glucose to fructose over a novel aluminum doped graphitic carbon nitride bifunctional catalyst. Journal of Cleaner Production, 2022, 346, 131144.	9.3	10
43	An immobilized molybdenum acetylacetonate complex on expanded starch for the epoxidation of stillingia oil. RSC Advances, 2015, 5, 91558-91563.	3.6	8
44	Flame retardancy and mechanical properties of thermal plastic composite panels made from <scp>T</scp> etra <scp>P</scp> ak waste and highâ€density polyethylene. Polymer Composites, 2016, 37, 1797-1804.	4.6	8
45	Dynamic Dielectric Properties of a Wood Liquefaction System Using Polyethylene Glycol and Glycerol. ACS Sustainable Chemistry and Engineering, 2017, 5, 1123-1131.	6.7	8
46	Efficient Utilization and Conversion of Whole Components in Waste Biomass with One-Pot-Oriented Liquefaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 18142-18152.	6.7	8
47	Acid-Catalyzed Conversion of Cellulose Into Levulinic Acid With Biphasic Solvent System. Frontiers in Plant Science, 2021, 12, 630807.	3.6	7
48	Liquefaction of Torrefied Wood using Microwave Irradiation. Energy & Samp; Fuels, 2016, 30, 5862-5869.	5.1	6
49	Preparation of an oxyalkylated <scp>ligninâ€gâ€</scp> polylactic acid copolymer to improve the compatibility of an organosolv lignin in blended poly(lactic acid) films. Journal of Applied Polymer Science, 2022, 139, .	2.6	5
50	In Situ Hydrodeoxygenation of Lignin-Derived Phenols With Synergistic Effect Between the Bimetal and Nb2O5 Support. Frontiers in Energy Research, 2021, 9, .	2.3	4
51	Preparation, characterization, and application of hollow ⟨scp⟩ nanoâ€TiO ⟨sub⟩2⟨ sub⟩ ⟨ scp⟩ @modified graphene fluorinated copolymer nanocomposite leather finishing agents. Journal of Applied Polymer Science, 0, , .	2.6	0