
S Baken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584676/publications.pdf Version: 2024-02-01

SRAKEN

#	Article	IF	CITATIONS
1	Using Exposure Data to Identify Priority Substances Under the European Water Framework Directive: The Quest to Reflect Uncertainties. Environmental Toxicology and Chemistry, 2021, 40, 1237-1238.	4.3	3
2	Copper transformation, speciation, and detoxification in anoxic and suboxic freshwater sediments. Chemosphere, 2021, 282, 131063.	8.2	11
3	Demonstrating the Reliability of bioâ€met for Determining Compliance with Environmental Quality Standards for Metals in Europe. Environmental Toxicology and Chemistry, 2020, 39, 2361-2377.	4.3	10
4	Weightâ€ofâ€Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification. Environmental Toxicology and Chemistry, 2019, 38, 1839-1849.	4.3	8
5	Method Development for Determining the Removal of Metals from the Water Column under Transformation/Dissolution Conditions for Chronic Hazard Classification. Environmental Toxicology and Chemistry, 2019, 38, 2032-2042.	4.3	6
6	Modeling the Fate of Metal Concentrates in Surface Water. Environmental Toxicology and Chemistry, 2019, 38, 1256-1272.	4.3	1
7	The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies. Environmental Toxicology and Chemistry, 2019, 38, 1386-1399.	4.3	36
8	The Use of Mechanistic Population Models in Metal Risk Assessment: Combined Effects of Copper and Food Source on <i>Lymnaea stagnalis</i> Populations. Environmental Toxicology and Chemistry, 2019, 38, 1104-1119.	4.3	11
9	Assessing Compliance of European Fresh Waters for Copper: Accounting for Bioavailability. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 153-159.	2.7	6
10	Internal Loading and Redox Cycling of Sediment Iron Explain Reactive Phosphorus Concentrations in Lowland Rivers. Environmental Science & Technology, 2017, 51, 2584-2592.	10.0	69
11	Crop residue management and oxalateâ€extractable iron and aluminium explain longâ€ŧerm soil organic carbon sequestration and dynamics. European Journal of Soil Science, 2016, 67, 332-340.	3.9	29
12	Phosphate binding by natural iron-rich colloids in streams. Water Research, 2016, 98, 326-333.	11.3	65
13	Long-term application of compost versus other organic fertilizers: effects on phosphorus leaching. Acta Horticulturae, 2016, , 213-220.	0.2	0
14	Polyphosphates and Fulvates Enhance Environmental Stability of PO ₄ -Bearing Colloidal Iron Oxyhydroxides. Journal of Agricultural and Food Chemistry, 2016, 64, 8465-8473.	5.2	17
15	Simulating the mobility of meteoric 10 Be in the landscape through a coupled soil-hillslope model (Be2D). Earth and Planetary Science Letters, 2016, 439, 143-157.	4.4	32
16	Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study. Water Research, 2016, 99, 83-90.	11.3	46
17	Phosphate-Exchanged Mg–Al Layered Double Hydroxides: A New Slow Release Phosphate Fertilizer. ACS Sustainable Chemistry and Engineering, 2016, 4, 4280-4287.	6.7	160
18	Impact of dry-wet and freeze-thaw events on pesticide mineralizing populations and their activity in wetland ecosystems: A microcosm study. Chemosphere, 2016, 146, 85-93.	8.2	12

S Baken

#	Article	IF	CITATIONS
19	Body distribution of SiO ₂ –Fe ₃ O ₄ core-shell nanoparticles after intravenous injection and intratracheal instillation. Nanotoxicology, 2016, 10, 567-574.	3.0	17
20	The long term use of farmyard manure and compost: Effects on P availability, orthophosphate sorption strength and P leaching. Agriculture, Ecosystems and Environment, 2016, 216, 23-33.	5.3	73
21	Vanadium bioavailability in soils amended with blast furnace slag. Journal of Hazardous Materials, 2015, 296, 158-165.	12.4	40
22	Oxidation of Iron Causes Removal of Phosphorus and Arsenic from Streamwater in Groundwater-Fed Lowland Catchments. Environmental Science & Technology, 2015, 49, 2886-2894.	10.0	42
23	Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches. Water Research, 2015, 71, 160-170.	11.3	72
24	Iron colloids reduce the bioavailability of phosphorus to the green alga Raphidocelis subcapitata. Water Research, 2014, 59, 198-206.	11.3	41
25	Characterisation of hydrous ferric oxides derived from iron-rich groundwaters and their contribution to the suspended sediment of streams. Applied Geochemistry, 2013, 39, 59-68.	3.0	26
26	Vanadium bioavailability and toxicity to soil microorganisms and plants. Environmental Toxicology and Chemistry, 2013, 32, 2266-2273.	4.3	90
27	Ageing of vanadium in soils and consequences for bioavailability. European Journal of Soil Science, 2012, 63, 839-847.	3.9	61
28	Metal Complexation Properties of Freshwater Dissolved Organic Matter Are Explained by Its Aromaticity and by Anthropogenic Ligands. Environmental Science & Technology, 2011, 45, 2584-2590.	10.0	188