Jürgen M Kaufmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584570/publications.pdf

Version: 2024-02-01

28 papers 1,711 citations

471509 17 h-index 28 g-index

28 all docs 28 docs citations

times ranked

28

1211 citing authors

#	Article	IF	CITATIONS
1	Neurocognitive effects of a training program for poor face recognizers using shape and texture caricatures: A pilot investigation. Neuropsychologia, 2022, 165, 108133.	1.6	4
2	Similar use of shape and texture cues for own- and other-race faces during face learning and recognition. Vision Research, 2021, 188, 32-41.	1.4	7
3	Neural Correlates of Own- and Other-Face Perception in Body Dysmorphic Disorder. Frontiers in Psychiatry, 2020, 11, 302.	2.6	5
4	Familiar Face Priming: The Role of Second-Order Configuration and Individual Face Recognition Abilities. Perception, 2018, 47, 185-196.	1.2	9
5	Enhancement of face-sensitive ERPs in older adults induced by face recognition training. Neuropsychologia, 2018, 119, 197-213.	1.6	8
6	Multisensory stimulation modulates perceptual and post perceptual face representations: Evidence from eventâ€related potentials. European Journal of Neuroscience, 2018, 48, 2259-2271.	2.6	7
7	Dominance of texture over shape in facial identity processing is modulated by individual abilities. British Journal of Psychology, 2017, 108, 369-396.	2.3	24
8	Caricature generalization benefits for faces learned with enhanced idiosyncratic shape or texture. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 185-197.	2.0	9
9	The Role of Familiarity for Representations in Norm-Based Face Space. PLoS ONE, 2016, 11, e0155380.	2.5	14
10	Effects of Caricaturing in Shape or Color on Familiarity Decisions for Familiar and Unfamiliar Faces. PLoS ONE, 2016, 11, e0149796.	2.5	20
11	Early temporal negativity is sensitive to perceived (rather than physical) facial identity. Neuropsychologia, 2015, 75, 132-142.	1.6	12
12	Arguments Against a Configural Processing Account of Familiar Face Recognition. Perspectives on Psychological Science, 2015, 10, 482-496.	9.0	112
13	The Neural Signature of the Own-Race Bias: Evidence from Event-Related Potentials. Cerebral Cortex, 2014, 24, 826-835.	2.9	89
14	Neural correlates of facilitations in face learning by selective caricaturing of facial shape or reflectance. Neurolmage, 2014, 102, 736-747.	4.2	39
15	High and low performers differ in the use of shape information for face recognition. Neuropsychologia, 2013, 51, 1310-1319.	1.6	42
16	Effects of anticaricaturing vs. caricaturing and their neural correlates elucidate a role of shape for face learning. Neuropsychologia, 2012, 50, 2426-2434.	1.6	44
17	The faces you remember: Caricaturing shape facilitates brain processes reflecting the acquisition of new face representations. Biological Psychology, 2012, 89, 21-33.	2.2	55
18	Faces forming traces: Neurophysiological correlates of learning naturally distinctive and caricatured faces. NeuroImage, 2012, 63, 491-500.	4.2	52

#	Article	IF	CITATIONS
19	N250 ERP Correlates of the Acquisition of Face Representations across Different Images. Journal of Cognitive Neuroscience, 2009, 21, 625-641.	2.3	153
20	Distortions in the brain? ERP effects of caricaturing familiar and unfamiliar faces. Brain Research, 2008, 1228, 177-188.	2.2	48
21	Brain responses to repetitions of human and animal faces, inverted faces, and objects — An MEG study. Brain Research, 2007, 1184, 226-233.	2.2	63
22	Hemispheric asymmetries in font-specific and abstractive priming of written personal names: Evidence from event-related brain potentials. Brain Research, 2006, 1117, 195-205.	2.2	12
23	Speaker Variations Influence Speechreading Speed for Dynamic Faces. Perception, 2005, 34, 595-610.	1.2	7
24	The Thatcher illusion seen by the brain: an event-related brain potentials study. Cognitive Brain Research, 2005, 24, 544-555.	3.0	62
25	Expression Influences the Recognition of Familiar Faces. Perception, 2004, 33, 399-408.	1.2	113
26	Interhemispheric cooperation for face recognition but not for affective facial expressions. Neuropsychologia, 2003, 41, 407-414.	1.6	83
27	Human brain potential correlates of repetition priming in face and name recognition. Neuropsychologia, 2002, 40, 2057-2073.	1.6	188
28	Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Cognitive Brain Research, 2002, 14, 398-409.	3.0	430