
Carla Caruso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and validation of new reference genes for accurate quantitative reverse transcriptase-PCR normalization in the Antarctic plant Colobanthus quitensis under abiotic stress conditions. Polar Biology, 2021, 44, 389-405.	1.2	5
2	What Antarctic Plants Can Tell Us about Climate Changes: Temperature as a Driver for Metabolic Reprogramming. Biomolecules, 2021, 11, 1094.	4.0	15
3	A Metabolic Profiling Analysis Revealed a Primary Metabolism Reprogramming in Arabidopsis glyl4 Loss-of-Function Mutant. Plants, 2021, 10, 2464.	3.5	9
4	In silico analysis of metatranscriptomic data from the Antarctic vascular plant Colobanthus quitensis: Responses to a global warming scenario through changes in fungal gene expression levels. Fungal Ecology, 2020, 43, 100873.	1.6	13
5	Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. FASEB Journal, 2020, 34, 4512-4526.	0.5	21
6	Physiological response of Posidonia oceanica to heavy metal pollution along the Tyrrhenian coast. Functional Plant Biology, 2019, 46, 933.	2.1	10
7	GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules, 2019, 9, 635.	4.0	18
8	Proteomic Analysis of MeJa-Induced Defense Responses in Rice against Wounding. International Journal of Molecular Sciences, 2019, 20, 2525.	4.1	42
9	A barnavirus sequence mined from a transcriptome of the Antarctic pearlwort Colobanthus quitensis. Archives of Virology, 2018, 163, 1921-1926.	2.1	15
10	Xenograft as In Vivo Experimental Model. Methods in Molecular Biology, 2018, 1692, 97-105.	0.9	3
11	Targeting KRAS in metastatic colorectal cancer: current strategies and emerging opportunities. Journal of Experimental and Clinical Cancer Research, 2018, 37, 57.	8.6	140
12	Fluoxetine or Sox2 reactivate proliferation-defective stem and progenitor cells of the adult and aged dentate gyrus. Neuropharmacology, 2018, 141, 316-330.	4.1	21
13	Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism. Scientific Reports, 2018, 8, 12792.	3.3	10
14	Epigenetic control of defense genes following MeJA-induced priming in rice (O. sativa). Journal of Plant Physiology, 2018, 228, 166-177.	3.5	45
15	Estimating the genetic diversity and structure of <i>Quercus trojana</i> Webb populations in Italy by SSRs: implications for management and conservation. Canadian Journal of Forest Research, 2017, 47, 331-339.	1.7	12
16	Patient-derived xenografts: a relevant preclinical model for drug development. Journal of Experimental and Clinical Cancer Research, 2016, 35, 189.	8.6	109
17	Laser Microdissection of Grapevine Leaves Reveals Site-Specific Regulation of Transcriptional Response toPlasmopara viticola. Plant and Cell Physiology, 2016, 57, 69-81.	3.1	25
	Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum) Ti FTOoO 0.0	rgBT /Over	ock 10 Tf 50

18

2

Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6 3.5 56 Journal of Plant Physiology, 2016, 190, 79-94.

CARLA CARUSO

#	Article	IF	CITATIONS
19	Abstract 266: The G-quadruplex ligand EMICORON potentiates the antitumor efficacy of chemotherapy on colon cancer experimental models. , 2016, , .		Ο
20	Genomic Resources Notes accepted 1 February 2015 - 31 March 2015. Molecular Ecology Resources, 2015, 15, 1014-1015.	4.8	10
21	Xanthomonas campestris lipooligosaccharides trigger innate immunity and oxidative burst in Arabidopsis. Plant Physiology and Biochemistry, 2014, 85, 51-62.	5.8	12
22	Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: Cloning, sequencing and characterization of the lower pathways. Biochimie, 2013, 95, 241-250.	2.6	4
23	Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Molecular BioSystems, 2013, 9, 1169.	2.9	68
24	Antifungal activity of Vitex agnus-castus extract against Pythium ultimum in tomato. Crop Protection, 2013, 43, 223-230.	2.1	20
25	Modular structure of HEL protein from <i>Arabidopsis</i> reveals new potential functions for PR-4 proteins. Biological Chemistry, 2012, 393, 1533-1546.	2.5	42
26	Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis. Journal of Experimental Botany, 2011, 62, 1975-1990.	4.8	36
27	Structural basis of the antifungal activity of wheat PR4 proteins. FEBS Letters, 2009, 583, 2865-2871.	2.8	59
28	Molecular Characterization of a Wheat Protein Induced by Vernalisation. Protein Journal, 2009, 28, 253-262.	1.6	4
29	Constitutive over-expression of two wheat pathogenesis-related genes enhances resistance of tobacco plants to Phytophthora nicotianae. Plant Cell, Tissue and Organ Culture, 2008, 92, 73-84.	2.3	14
30	Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum. Plant Science, 2008, 175, 339-347.	3.6	88
31	Molecular and functional analysis of new members of the wheat PR4 gene family. Biological Chemistry, 2006, 387, 1101-1111.	2.5	19
32	Over-expression of a pathogenesis-related protein gene in transgenic tomato alters the transcription patterns of other defence genes. Journal of Horticultural Science and Biotechnology, 2006, 81, 27-32.	1.9	8
33	CysMap and CysJoin: Database and tools for protein disulphides localisation. FEBS Letters, 2005, 579, 3048-3054.	2.8	3
34	Structural properties of the protein SV-IV. FEBS Journal, 2004, 271, 263-271.	0.2	4
35	Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Letters, 2004, 575, 71-76.	2.8	77
36	Comparing the modeled structures of PR-4 proteins from wheat. Journal of Molecular Modeling, 2003, 9, 9-15.	1.8	19

CARLA CARUSO

#	Article	IF	CITATIONS
37	Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Science, 2003, 164, 1067-1078.	3.6	77
38	Recombinant Wheat Antifungal PR4 Proteins Expressed in Escherichia coli. Protein Expression and Purification, 2001, 23, 380-388.	1.3	19
39	A basic peroxidase from wheat kernel with antifungal activity. Phytochemistry, 2001, 58, 743-750.	2.9	79
40	lsolation and amino acid sequence of two new PR-4 proteins from wheat. The Protein Journal, 2001, 20, 327-335.	1,1	29
41	Antifungal Activity of a Bowman-Birk-type Trypsin Inhibitor from Wheat Kernel. Journal of Phytopathology, 2000, 148, 477-481.	1.0	63
42	Probing the modelled structure of Wheatwin1 by controlled proteolysis and sequence analysis of unfractionated digestion mixtures. , 1999, 36, 192-204.		11
43	Isolation and Characterisation of Wheat cDNA Clones Encoding PR4 Proteins. DNA Sequence, 1999, 10, 301-307.	0.7	29
44	Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Science, 1999, 140, 71-79.	3.6	90
45	Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Science, 1999, 140, 87-97.	3.6	114
46	Antifungal properties of chitinases from Castanea sativa against hypovirulent and virulent strains of the chestnut blight fungus Cryphonectria parasitica. Physiological and Molecular Plant Pathology, 1999, 55, 29-35.	2.5	17
47	Probing the modelled structure of Wheatwin1 by controlled proteolysis and sequence analysis of unfractionated digestion mixtures. Proteins: Structure, Function and Bioinformatics, 1999, 36, 192-204.	2.6	1
48	A computer program to compare sequence fingerprints of homologous proteins for the rapid assessment of their primary structure differences. The Protein Journal, 1998, 17, 867-873.	1.1	2
49	Laccase from the white-rot fungus Trametes trogii. Applied Microbiology and Biotechnology, 1998, 49, 545-551.	3.6	108
50	Activation ofSulfolobus solfataricusAlcohol Dehydrogenase by Modification of Cysteine Residue 38 with Iodoacetic Acidâ€. Biochemistry, 1996, 35, 638-647.	2.5	17
51	Assignment of protein disulphides by a computer method using mass spectrometric data. FEBS Letters, 1996, 393, 241-247.	2.8	12
52	Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. The Protein Journal, 1996, 15, 35-44.	1.1	85
53	Determination of the primary structure of homologous proteins by sequence analysis of peptide mixtures. The Protein Journal, 1996, 15, 405-412.	1.1	4
54	Characterization of extracellular proteases from Trametes trogii. Phytochemistry, 1996, 41, 385-393.	2.9	19

CARLA CARUSO

#	Article	IF	CITATIONS
55	An algorithm to analyse the hydrolysis pathway of peptides and proteins by sequence analyses of unfractionated digestion mixtures. Bioinformatics, 1996, 12, 81-88.	4.1	3
56	Bacillus subtilis Vegetative Catalase Is an Extracellular Enzyme. Applied and Environmental Microbiology, 1995, 61, 4471-4473.	3.1	36
57	An algorithm to determine protein sequence alignment by utilizing data obtained from a peptide mixture and individual peptides. Bioinformatics, 1994, 10, 489-494.	4.1	3
58	The amino acid sequence and reactive site of a single-headed trypsin inhibitor from wheat endosperm. The Protein Journal, 1994, 13, 187-194.	1.1	14
59	Hydrolysis pattern of procasomorphin by gut proteases from plant parasite <i>Heliothis zea</i> , determined by sequence analyses performed on the unfractionated digestion mixtures. International Journal of Peptide and Protein Research, 1994, 43, 201-204.	0.1	8
60	The amino acid sequence of a protein from wheat kernel closely related to proteins involved in the mechanisms of plant defence. The Protein Journal, 1993, 12, 379-386.	1.1	29
61	Acetohydroxy acid synthase and threonine deaminase activities, and the biosynthesis of isoleucine-leucine-valine in Streptococcus bovis. Research in Microbiology, 1993, 144, 539-545.	2.1	2
62	Haemoglobin of the Antarctic fish Pagothenia bernacchii. Journal of Molecular Biology, 1992, 224, 449-460.	4.2	96
63	The amino acid sequence of the single hemoglobin of the high-Antarctic fish Bathydraco marri Norman. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 941-946.	0.2	7
64	The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni. BBA - Proteins and Proteomics, 1991, 1078, 273-282.	2.1	31
65	Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. Amino acid sequence of the beta chain. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 96, 367-373.	0.2	6
66	Structure and function of hemoglobin in antarctic fishes and evolutionary implications. Polar Biology, 1990, 10, 269-274.	1.2	28
67	PROLANG: the SCAN command. Bioinformatics, 1990, 6, 403-403.	4.1	0
68	The amino terminal sequence of the developmentally regulated Ch21 protein shows homology with amino terminal sequences of low molecular weight proteins binding hydrophobic molecules. Biochemical and Biophysical Research Communications, 1990, 168, 933-938.	2.1	11
69	Human erythrocyte glucose-6-phosphate dehydrogenase. Identification of a reactive lysyl residue labelled with pyridoxal 5'-phosphate. FEBS Journal, 1988, 171, 485-489.	0.2	46
70	Chemical modification of phosphorylase b by tetranitromethane. Identification of a functional tyrosyl residue. FEBS Journal, 1987, 166, 547-552.	0.2	2
71	Sequence and Structure of a Human Glucose Transporter. Science, 1985, 229, 941-945.	12.6	1,522
72	Amino acid sequence of the carboxy-terminal end of human erythrocyte glucose-6-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 1984, 118, 332-338.	2.1	13