
Agnieszka Dansonka-Mieszkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584314/publications.pdf

Version: 2024-02-01

Agnieszka

#	Article	IF	CITATIONS
1	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
2	ldentification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	21.4	356
3	GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nature Genetics, 2013, 45, 362-370.	21.4	326
4	A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Laboratory Investigation, 2004, 84, 874-883.	3.7	292
5	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
6	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
7	Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nature Communications, 2013, 4, 1628.	12.8	144
8	Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 1619-1630.	1.9	111
9	Gastrointestinal Stromal Tumors with Internal Tandem Duplications in 3' End of KIT Juxtamembrane Domain Occur Predominantly in Stomach and Generally Seem to Have a Favorable Course. Modern Pathology, 2003, 16, 1257-1264.	5.5	104
10	Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nature Communications, 2013, 4, 1627.	12.8	98
11	A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Medical Genetics, 2010, 11, 20.	2.1	96
12	Ovarian small cell carcinoma of hypercalcemic type – evidence of germline origin and smarca4 gene inactivation. a pilot study. Polish Journal of Pathology, 2013, 4, 238-246.	0.3	85
13	PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biology and Therapy, 2009, 8, 21-26.	3.4	81
14	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
15	Adult body mass index and risk of ovarian cancer by subtype: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 884-895.	1.9	71
16	Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. Human Molecular Genetics, 2015, 24, 5955-5964.	2.9	68
17	Evaluation of NF2 and NF1 Tumor Suppressor Genes in Distinctive Gastrointestinal Nerve Sheath Tumors Traditionally Diagnosed as Benign Schwannomas: A Study of 20 Cases. Laboratory Investigation, 2003, 83, 1361-1371.	3.7	65
18	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	12.8	63

Agnieszka

#	Article	IF	CITATIONS
19	The putative oncogene, <i>CRNDE,</i> is a negative prognostic factor in ovarian cancer patients. Oncotarget, 2015, 6, 43897-43910.	1.8	51
20	Risk of Ovarian Cancer and the NF-κB Pathway: Genetic Association with <i>IL1A</i> and <i>TNFSF10</i> . Cancer Research, 2014, 74, 852-861.	0.9	48
21	Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE, 2015, 10, e0128106.	2.5	44
22	The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues. PLoS ONE, 2015, 10, e0127475.	2.5	40
23	Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Human Molecular Genetics, 2015, 24, 3595-3607.	2.9	40
24	Evidence of a genetic link between endometriosis and ovarian cancer. Fertility and Sterility, 2016, 105, 35-43.e10.	1.0	37
25	Loss of heterozygosity on chromosome 22q in gastrointestinal stromal tumors (GISTs): a study on 50 cases. Laboratory Investigation, 2005, 85, 237-247.	3.7	34
26	Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes: Findings from the Ovarian Cancer Association Consortium. Clinical Cancer Research, 2015, 21, 5264-5276.	7.0	33
27	Germline SMARCA4 mutations in patients with ovarian small cell carcinoma of hypercalcemic type. Orphanet Journal of Rare Diseases, 2015, 10, 32.	2.7	31
28	Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1239-1252.	2.5	30
29	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	2.5	28
30	Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). Journal of Genetics and Genome Research, 2015, 2, .	0.3	25
31	Genome-wide association study of subtype-specific epithelial ovarian cancer risk alleles using pooled DNA. Human Genetics, 2014, 133, 481-497.	3.8	23
32	Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. British Journal of Cancer, 2017, 116, 524-535.	6.4	23
33	Epithelialâ€Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genetic Epidemiology, 2015, 39, 689-697.	1.3	22
34	Large-Scale Evaluation of Common Variation in Regulatory T Cell–Related Genes and Ovarian Cancer Outcome. Cancer Immunology Research, 2014, 2, 332-340.	3.4	21
35	Analysis of Over 10,000 Cases Finds No Association between Previously Reported Candidate Polymorphisms and Ovarian Cancer Outcome. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 987-992.	2.5	20
36	Clinical importance of <i>FANCD2, BRIP1, BRCA1, BRCA2</i> and <i>FANCF</i> expression in ovarian carcinomas. Cancer Biology and Therapy, 2019, 20, 843-854.	3.4	20

Agnieszka

#	Article	IF	CITATIONS
37	Assessing the genetic architecture of epithelial ovarian cancer histological subtypes. Human Genetics, 2016, 135, 741-756.	3.8	19
38	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
39	The significance of c.690G>T polymorphism (rs34529039) and expression of the <i>CEBPA</i> gene in ovarian cancer outcome. Oncotarget, 2016, 7, 67412-67424.	1.8	17
40	Consortium analysis of gene and gene–folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk. Molecular Nutrition and Food Research, 2014, 58, 2023-2035.	3.3	16
41	Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study. Gynecologic Oncology, 2015, 136, 542-548.	1.4	15
42	Adult height is associated with increased risk of ovarian cancer: a Mendelian randomisation study. British Journal of Cancer, 2018, 118, 1123-1129.	6.4	15
43	Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. International Journal of Epidemiology, 2018, 47, 450-459.	1.9	15
44	Variation in NF-κB Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1421-1427.	2.5	13
45	Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration. Oncotarget, 2016, 7, 72381-72394.	1.8	13
46	p19 ^{INK4d} mRNA and protein expression as new prognostic factors in ovarian cancer patients. Cancer Biology and Therapy, 2013, 14, 973-981.	3.4	11
47	Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.	2.5	9
48	Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget, 2016, 7, 69097-69110.	1.8	5
49	The utility of fluorescence in situ hybridization (FISH) in determining DNA damage-inducible transcript 3 (DDIT3) amplification in dedifferentiated liposarcomas – an important diagnostic pitfall. Pathology Research and Practice, 2021, 225, 153555.	2.3	4
50	Clinical importance of the EMSY gene expression and polymorphisms in ovarian cancer. Oncotarget, 2018, 9, 17735-17755.	1.8	4
51	No Evidence That Genetic Variation in the Myeloid-Derived Suppressor Cell Pathway Influences Ovarian Cancer Survival. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 420-424.	2.5	3
52	Unique gastrointestinal stromal tumor with PDGFRA D842Y mutation—evaluation of in vivo sensitivity to imatinib. Memo - Magazine of European Medical Oncology, 2021, 14, 208-213.	0.5	1