Huayu Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3584186/publications.pdf

Version: 2024-02-01

44042 54882 7,951 141 48 84 citations h-index g-index papers 145 145 145 9949 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 2012, 37, 237-280.	11.8	1,103
2	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
3	A Tumorâ€Microenvironmentâ€Activated Nanozymeâ€Mediated Theranostic Nanoreactor for Imagingâ€Guided Combined Tumor Therapy. Advanced Materials, 2019, 31, e1902885.	11.1	246
4	Production and clinical development of nanoparticles for gene delivery. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16023.	1.8	207
5	Gene transfection of hyperbranched PEI grafted by hydrophobic amino acid segment PBLG. Biomaterials, 2007, 28, 2899-2907.	5.7	186
6	Ultrasensitive pH Triggered Charge/Size Dual-Rebound Gene Delivery System. Nano Letters, 2016, 16, 6823-6831.	4.5	179
7	Co-delivery of chemotherapeutics and proteins for synergistic therapy. Advanced Drug Delivery Reviews, 2016, 98, 64-76.	6.6	178
8	Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials, 2020, 230, 119617.	5.7	162
9	Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials, 2019, 223, 119459.	5.7	157
10	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials, 2014, 35, 8723-8734.	5.7	136
11	RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. Journal of Controlled Release, 2011, 155, 47-53.	4.8	125
12	Nanoparticles for Gene Delivery. Small, 2013, 9, 2034-2044.	5.2	120
13	Doxorubicin-loaded nanoscale metal–organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy. Biomaterials Science, 2019, 7, 4615-4623.	2.6	119
14	A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy. Biomacromolecules, 2017, 18, 1342-1349.	2.6	113
15	Covalent Organic Nanosheets Integrated Heterojunction with Two Strategies To Overcome Hypoxic-Tumor Photodynamic Therapy. Chemistry of Materials, 2019, 31, 3313-3323.	3.2	111
16	Molecular Strings Significantly Improved the Gene Transfection Efficiency of Polycations. Journal of the American Chemical Society, 2018, 140, 11992-12000.	6.6	105
17	Engineering Metal–Organic Frameworks for Photoacoustic Imaging-Guided Chemo-/Photothermal Combinational Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41035-41045.	4.0	104
18	Gold Nanorods Electrostatically Binding Nucleic Acid Probe for In Vivo MicroRNA Amplified Detection and Photoacoustic Imagingâ€Guided Photothermal Therapy. Advanced Functional Materials, 2018, 28, 1800490.	7.8	100

#	Article	IF	Citations
19	pH-responsive zwitterionic copolypeptides as charge conversional shielding system for gene carriers. Journal of Controlled Release, 2014, 174, 117-125.	4.8	99
20	Multifunctional Theranostic Nanoparticles Derived from Fruit-Extracted Anthocyanins with Dynamic Disassembly and Elimination Abilities. ACS Nano, 2018, 12, 8255-8265.	7.3	99
21	Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials, 2018, 171, 198-206.	5.7	98
22	Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1086-1093.	2.0	97
23	miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomaterialia, 2015, 25, 184-193.	4.1	95
24	Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. Science Advances, 2020, 6, eaay7148.	4.7	94
25	Cyanine-Assisted Exfoliation of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39503-39512.	4.0	93
26	Pulmonary Codelivery of Doxorubicin and siRNA by pHâ€Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer. Small, 2015, 11, 4321-4333.	5.2	92
27	Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. Journal of Controlled Release, 2019, 295, 153-163.	4.8	87
28	A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy. Biomaterials, 2019, 197, 284-293.	5.7	86
29	Micellization and Reversible pH-Sensitive Phase Transfer of the Hyperbranched Multiarm PEl–PBLG Copolymer. Chemistry - A European Journal, 2006, 12, 4305-4312.	1.7	85
30	An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. Science Advances, 2020, 6, .	4.7	81
31	A pH-sensitive charge-conversion system for doxorubicin delivery. Acta Biomaterialia, 2013, 9, 7672-7678.	4.1	78
32	Hydrophobic poly (amino acid) modified PEI mediated delivery of rev-casp-3 for cancer therapy. Biomaterials, 2012, 33, 4589-4596.	5.7	75
33	Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug. Biomaterials Science, 2016, 4, 272-280.	2.6	68
34	Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216, 119255.	5.7	68
35	A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. Journal of Controlled Release, 2016, 243, 357-369.	4.8	65
36	Polycations for Gene Delivery: Dilemmas and Solutions. Bioconjugate Chemistry, 2019, 30, 338-349.	1.8	65

#	Article	IF	Citations
37	Codelivery of Antitumor Drug and Gene by a pH-Sensitive Charge-Conversion System. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3207-3215.	4.0	62
38	Light-Induced Hypoxia-Triggered Living Nanocarriers for Synergistic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19398-19407.	4.0	62
39	Photothermal-Chemotherapy Enhancing Tumor Immunotherapy by Multifunctional Metal–Organic Framework Based Drug Delivery System. Nano Letters, 2021, 21, 7796-7805.	4.5	61
40	A GSHâ€Gated DNA Nanodevice for Tumorâ€Specific Signal Amplification of microRNA and MR Imaging–Guided Theranostics. Small, 2019, 15, e1903016.	5.2	58
41	Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Biomaterials, 2020, 252, 120114.	5.7	58
42	Biodegradable mPEG-b-P(MCC-g-OEI) copolymers for efficient gene delivery. Journal of Controlled Release, 2011, 152, 135-142.	4.8	57
43	Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing. RSC Advances, 2015, 5, 94248-94256.	1.7	56
44	Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. Journal of Controlled Release, 2020, 328, 631-639.	4.8	56
45	Polylysine-modified polyethylenimine inducing tumor apoptosis as an efficient gene carrier. Journal of Controlled Release, 2013, 172, 410-418.	4.8	54
46	Charge-conversional zwitterionic copolymer as pH-sensitive shielding system for effective tumor treatment. Acta Biomaterialia, 2015, 26, 45-53.	4.1	54
47	Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. Journal of Controlled Release, 2016, 231, 94-102.	4.8	54
48	Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. Journal of Controlled Release, 2019, 293, 104-112.	4.8	51
49	Gold-Nanorods-Based Gene Carriers with the Capability of Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31558-31566.	4.0	48
50	Multiâ€armed poly(<scp>L</scp> â€glutamic acid)â€graftâ€oligoethylenimine copolymers as efficient nonviral gene delivery vectors. Journal of Gene Medicine, 2010, 12, 64-76.	1.4	47
51	New bio-renewable polyester with rich side amino groups from <scp>I</scp> -lysine via controlled ring-opening polymerization. Polymer Chemistry, 2014, 5, 6495-6502.	1.9	46
52	Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioactive Materials, 2022, 7, 167-180.	8.6	46
53	Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nature Communications, 2021, 12, 6742.	5.8	45
54	Efficient recovery of precious metal based on Au–S bond and electrostatic interaction. Green Chemistry, 2014, 16, 4875-4878.	4.6	41

#	Article	IF	Citations
55	Prodrug-Based Versatile Nanomedicine with Simultaneous Physical and Physiological Tumor Penetration for Enhanced Cancer Chemo-Immunotherapy. Nano Letters, 2021, 21, 3721-3730.	4.5	41
56	In situ vaccination and gene-mediated PD-L1 blockade for enhanced tumor immunotherapy. Chinese Chemical Letters, 2021, 32, 1770-1774.	4.8	41
57	lonic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydrate Polymers, 2018, 201, 246-256.	5.1	40
58	Tumor microenvironment as the "regulator―and "target―for gene therapy. Journal of Gene Medicine, 2019, 21, e3088.	1.4	40
59	Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD). Acta Biomaterialia, 2017, 54, 58-68.	4.1	39
60	A Cationic Metal–Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. Nano Letters, 2021, 21, 2461-2469.	4.5	39
61	The suppression of metastatic lung cancer by pulmonary administration of polymer nanoparticles for co-delivery of doxorubicin and Survivin siRNA. Biomaterials Science, 2016, 4, 1646-1654.	2.6	38
62	Recent progress in cationic polymeric gene carriers for cancer therapy. Science China Chemistry, 2017, 60, 319-328.	4.2	38
63	Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer. Acta Biomaterialia, 2022, 144, 132-141.	4.1	38
64	PEI Conjugated Gold Nanoparticles: Efficient Gene Carriers with Visible Fluorescence. Advanced Healthcare Materials, 2012, 1, 337-341.	3.9	37
65	Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. Biomaterials, 2019, 223, 119470.	5.7	36
66	Fe-TCPP@CS nanoparticles as photodynamic and photothermal agents for efficient antimicrobial therapy. Biomaterials Science, 2020, 8, 6526-6532.	2.6	36
67	Precise regulation of inflammation and immunosuppressive microenvironment for amplified photothermal/immunotherapy against tumour recurrence and metastasis. Nano Today, 2021, 40, 101266.	6.2	36
68	Photothermal Effect-Triggered Drug Release from Hydrogen Bonding-Enhanced Polymeric Micelles. Biomacromolecules, 2018, 19, 1950-1958.	2.6	35
69	In situ dual-crosslinked nanoparticles for tumor targeting gene delivery. Acta Biomaterialia, 2018, 65, 349-362.	4.1	35
70	Exploration of Fe ^{III} -Phenol Complexes for Photothermal Therapy and Photoacoustic Imaging. ACS Biomaterials Science and Engineering, 2019, 5, 4700-4707.	2.6	35
71	Hydrophobic Polyphenylalanineâ€Grafted Hyperbranched Polyethylenimine and its in vitro Gene Transfection. Macromolecular Bioscience, 2011, 11, 211-218.	2.1	33
72	Peptide-Based and Polypeptide-Based Gene Delivery Systems. Topics in Current Chemistry, 2017, 375, 32.	3.0	33

#	Article	IF	CITATIONS
73	A glutathione-depleting chemodynamic therapy agent with photothermal and photoacoustic properties for tumor theranostics. Nanoscale, 2020, 12, 1349-1355.	2.8	33
74	Polylysine-modified polyethylenimine polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene therapy in glioblastoma. Acta Biomaterialia, 2018, 80, 144-153.	4.1	32
75	A Highly Efficient siRNA Carrier of PBLG Modified Hyperbranched PEI. Macromolecular Bioscience, 2009, 9, 1247-1253.	2.1	31
76	<i>N</i> â€Isopropylacrylamideâ€Modified Polyethylenimines as Effective Gene Carriers. Macromolecular Bioscience, 2012, 12, 1680-1688.	2.1	31
77	BSAâ€irO ₂ : Catalaseâ€iike Nanoparticles with High Photothermal Conversion Efficiency and a High Xâ€ray Absorption Coefficient for Antiâ€inflammation and Antitumor Theranostics. Angewandte Chemie, 2018, 130, 10466-10470.	1.6	31
78	A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by H ₂ O ₂ -Responsive Gene Delivery System. ACS Applied Materials & Delivery System.	4.0	31
79	Dimeric camptothecin-loaded RGD-modified targeted cationic polypeptide-based micelles with high drug loading capacity and redox-responsive drug release capability. Biomaterials Science, 2017, 5, 2501-2510.	2.6	30
80	Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug. RSC Advances, 2015, 5, 30920-30928.	1.7	29
81	Targeting dual gene delivery nanoparticles overcomes immune checkpoint blockade induced adaptive resistance and regulates tumor microenvironment for improved tumor immunotherapy. Nano Today, 2021, 38, 101194.	6.2	29
82	Highly Fluorescent Gene Carrier Based on Ag–Au Alloy Nanoclusters. Macromolecular Bioscience, 2016, 16, 160-167.	2.1	28
83	Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Science China Materials, 2018, 61, 1484-1494.	3.5	28
84	Effective Eradication of Tumors by Enhancing Photoacousticâ€Imagingâ€Guided Combined Photothermal Therapy and Ultrasonic Therapy. Advanced Functional Materials, 2021, 31, 2009314.	7.8	28
85	Synthesis and characterization of a pH-sensitive shielding system for polycation gene carriers. Science China Chemistry, 2010, 53, 502-507.	4.2	26
86	Gold Nanoparticles for Cancer Theranostics. Chinese Journal of Chemistry, 2015, 33, 1001-1010.	2.6	26
87	pH Triggered Size Increasing Gene Carrier for Efficient Tumor Accumulation and Excellent Antitumor Effect. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15297-15306.	4.0	26
88	Helix Self-Assembly Behavior of Amino Acid-Modified Camptothecin Prodrugs and Its Antitumor Effect. ACS Applied Materials & Damp; Interfaces, 2020, 12, 7466-7476.	4.0	26
89	Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. Polymer Chemistry, 2014, 5, 3598.	1.9	25
90	Effective Tumor Treatment by <scp>VEGF</scp> si <scp>RNA</scp> Complexed with Hydrophobic Poly(<scp>A</scp> mino Acid)â€ <scp>M</scp> odified Polyethylenimine. Macromolecular Bioscience, 2013, 13, 1438-1446.	2.1	23

#	Article	IF	CITATIONS
91	Poly(<scp> </scp> -glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS Applied Materials & Diterfaces, 2020, 12, 19295-19306.	4.0	23
92	A Serumâ€Tolerant Hydroxylâ€Modified Polyethylenimine as Versatile Carriers of <i>p</i> p>/i>DNA/siRNA. Macromolecular Bioscience, 2013, 13, 512-522.	2.1	22
93	5-Fluorouracil loaded thermosensitive PLGA–PEG–PLGA hydrogels for the prevention of postoperative tendon adhesion. RSC Advances, 2015, 5, 25295-25303.	1.7	22
94	A pH sensitive co-delivery system of siRNA and doxorubicin for pulmonary administration to B16F10 metastatic lung cancer. RSC Advances, 2015, 5, 103380-103385.	1.7	22
95	Polymerization and coordination synergistically constructed photothermal agents for macrophages-mediated tumor targeting diagnosis and therapy. Biomaterials, 2021, 264, 120382.	5.7	22
96	Covalent organic framework nanoparticles for anti-tumor gene therapy. Science China Chemistry, 2021, 64, 1235-1241.	4.2	22
97	Hydrophobic Polyalanine Modified Hyperbranched Polyethylenimine as High Efficient pDNA and siRNA Carrier. Macromolecular Bioscience, 2014, 14, 1406-1414.	2.1	21
98	Oligoethylenimines Grafted to PEGylated Poly(\hat{l}^2 -amino ester)s for Gene Delivery. Biomacromolecules, 2011, 12, 1024-1031.	2.6	20
99	Highly Enhanced Antitumor Immunity by a Three-Barreled Strategy of the <scp>I</scp> -Arginine-Promoted Nanovaccine and Gene-Mediated PD-L1 Blockade. ACS Applied Materials & Amp; Interfaces, 2020, 12, 41127-41137.	4.0	19
100	Cationic Flexible Organic Framework for Combination of Photodynamic Therapy and Genetic Immunotherapy Against Tumors. Small, 2021, 17, e2008125.	5.2	19
101	Robust Fuel Catalyzed DNA Molecular Machine for in Vivo MicroRNA Detection. Advanced Biology, 2017, 1, 1700060.	3.0	18
102	Preparation of poly(glutamic acid) shielding micelles self-assembled from polylysine-b-polyphenylalanine for gene and drug codelivery. Chinese Chemical Letters, 2020, 31, 1427-1431.	4.8	18
103	Recent developments in intelligent biomedical polymers. Science in China Series B: Chemistry, 2009, 52, 117-130.	0.8	16
104	Zinc ion coordination significantly improved the transfection efficiency of low molecular weight polyethylenimine. Biomaterials Science, 2019, 7, 1716-1728.	2.6	15
105	Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery. Journal of Controlled Release, 2015, 213, e140-e141.	4.8	13
106	Enhancing the drug sensitivity of antibiotics on drug-resistant bacteria via the photothermal effect of FeTGNPs. Journal of Controlled Release, 2022, 341, 51-59.	4.8	13
107	pH-Responsive Natural Polymeric Gene Delivery Shielding System Based on Dynamic Covalent Chemistry. ACS Biomaterials Science and Engineering, 2018, 4, 193-199.	2.6	12
108	Chitosan hydrogel loaded with recombinant protein containing epitope C from HSP90 of Candida albicans induces protective immune responses against systemic candidiasis. International Journal of Biological Macromolecules, 2021, 173, 327-340.	3.6	12

#	Article	IF	CITATIONS
109	Pulmonary Drugs and Genes Delivery Systems for Lung Disease Treatment. Chinese Journal of Chemistry, 2014, 32, 13-21.	2.6	11
110	Opportunities and Challenges for mRNA Delivery Nanoplatforms. Journal of Physical Chemistry Letters, 2022, 13, 1314-1322.	2.1	11
111	Hyperbranched PEI grafted by hydrophilic amino acid segment poly[<i>N</i> à€(2â€hydroxyethyl)â€ <scp>L</scp> â€glutamine] as an efficient nonviral gene carrier. Journal of Applied Polymer Science, 2012, 123, 2257-2265.	1.3	10
112	Combination therapy of pDNA and siRNA by versatile carriers composed of poly(<scp>l</scp> -serine) modified polyethylenimines. Materials Chemistry Frontiers, 2017, 1, 937-946.	3.2	10
113	Aza-crown ether locked on polyethyleneimine: solving the contradiction between transfection efficiency and safety during <i>in vivo</i> gene delivery. Chemical Communications, 2020, 56, 5552-5555.	2.2	10
114	Guanidinated Thioureaâ€Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. Advanced Healthcare Materials, 2015, 4, 1369-1375.	3.9	9
115	Poly(ethylene glycol)-poly- <scp>l</scp> -glutamate complexed with polyethyleneimineâ^polyglycine for highly efficient gene delivery <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2018, 6, 3053-3062.	2.6	9
116	Bioreducible crosslinked low molecular weight branched PEI-PBLG as an efficient gene carrier. Science China Chemistry, 2010, 53, 2490-2496.	4.2	8
117	Synergistic treatment of cancer stem cells by combinations of antioncogenes and doxorubicin. Journal of Drug Delivery Science and Technology, 2015, 30, 417-423.	1.4	8
118	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA–PEG–PLGA hydrogels for localized and combined treatment of human osteosarcoma. Journal of Controlled Release, 2015, 213, e18.	4.8	8
119	PCL–F68–PCL/PLGA–PEG–PLGA mixed micelles mediated delivery of mitoxantrone for reversing multidrug resistant in breast cancer. RSC Advances, 2016, 6, 35318-35327.	1.7	7
120	Enhancers in polymeric nonviral gene delivery systems. View, 2021, 2, 20200072.	2.7	7
121	Dual Reactive Oxygen Species Generator Independent of Light and Oxygen for Tumor Imaging and Catalytic Therapy. CCS Chemistry, 2022, 4, 2321-2332.	4.6	7
122	Synthetic Helical Polypeptide as a Gene Transfection Enhancer. Biomacromolecules, 2022, 23, 2867-2877.	2.6	7
123	pH and reduction-sensitive disulfide cross-linked polyurethane micelles for bio-triggered anti-tumor drug delivery. Journal of Controlled Release, 2015, 213, e99-e100.	4.8	6
124	A pH-sensitive cationic micelle for siRNA delivery. Journal of Controlled Release, 2017, 259, e47.	4.8	6
125	Synthesis and characterization of a hyperbranched grafting copolymer PEI-g-PLeu for gene and drug co-delivery. Journal of Materials Science: Materials in Medicine, 2018, 29, 47.	1.7	5
126	Highly Effective Crosslinker for Redox-Sensitive Gene Carriers. Advances in Polymer Technology, 2021, 2021, 1-9.	0.8	5

#	Article	IF	CITATIONS
127	Gene-guided OX40L anchoring to tumor cells for synergetic tumor "self-killing―immunotherapy. Bioactive Materials, 2023, 25, 689-700.	8.6	5
128	pH-Triggered Sheddable Shielding System for Polycationic Gene Carriers. Polymers, 2016, 8, 141.	2.0	4
129	Exploring the in vivo fates of RGD and PEG modified PEI/DNA nanoparticles by optical imaging and optoacoustic imaging. RSC Advances, 2016, 6, 112552-112561.	1.7	4
130	Metformin booster adipocyte-targeted gene therapy for the treatment of obesity and related metabolic syndromes. Science China Chemistry, 2022, 65, 796-809.	4.2	4
131	pH-sensitive OEI-poly(aspartic acid- b -lysine) as charge shielding system for gene delivery. Journal of Controlled Release, 2015, 213, e104.	4.8	3
132	Novel microcapsules for drug and gene delivery. Journal of Controlled Release, 2015, 213, e130-e131.	4.8	1
133	Sulfathiazole grafted PEG-PLL as pH-sensitive shielding system for cationic gene delivery. Polymer Bulletin, 2016, 73, 3503-3511.	1.7	1
134	Synthesis of Copolymers Polyethyleneimineâ€ <i>co</i> êPolyphenylalanine as Gene and Drug Codelivery Carrier. Macromolecular Bioscience, 2021, 21, e2100033.	2.1	1
135	Sepsis Treatment Strategies Based on Nanomaterials [※] . Acta Chimica Sinica, 2022, 80, 668.	0.5	1
136	Polyethylenimines modified by amino acids with different charge states and hydrophilic/hydrophobic properties for gene carriers. Journal of Controlled Release, 2015, 213, e41.	4.8	0
137	Molecular Strings Modified Gene Delivery System. Biomaterial Engineering, 2021, , 1-37.	0.1	0
138	Charge/Size Dual-Rebound Gene Delivery System. Biomaterial Engineering, 2021, , 1-21.	0.1	0
139	Molecular Strings Modified Gene Delivery System. Biomaterial Engineering, 2022, , 1-37.	0.1	0
140	Preparation and Evaluation of Supramolecular Hydrogels for Localized Sustained Gene Delivery. Biomaterial Engineering, 2022, , 253-268.	0.1	0
141	Charge/Size Dual-Rebound Gene Delivery System. Biomaterial Engineering, 2022, , 39-59.	0.1	0