
David D Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3583686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD47 interactions with exportin-1 limit the targeting of m7G-modified RNAs to extracellular vesicles. Journal of Cell Communication and Signaling, 2022, 16, 397-419.	1.8	9
2	Functions of Thrombospondin-1 in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 4570.	1.8	63
3	CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. American Journal of Physiology - Cell Physiology, 2021, 321, C201-C213.	2.1	13
4	Differential intolerance to loss of function and missense mutations in genes that encode human matricellular proteins. Journal of Cell Communication and Signaling, 2021, 15, 93-105.	1.8	2
5	CD47 (Cluster of Differentiation 47). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2021, 25, 83-102.	0.1	Ο
6	CD63+ and MHC Class I+ Subsets of Extracellular Vesicles Produced by Wild-Type and CD47-Deficient Jurkat T Cells Have Divergent Functional Effects on Endothelial Cell Gene Expression. Biomedicines, 2021, 9, 1705.	1.4	2
7	Preclinical and clinical development of therapeutic antibodies targeting functions of CD47 in the tumor microenvironment. Antibody Therapeutics, 2020, 3, 179-192.	1.2	37
8	Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. American Journal of Physiology - Cell Physiology, 2020, 319, C45-C63.	2.1	25
9	A homogeneous SIRPα-CD47 cell-based, ligand-binding assay: Utility for small molecule drug development in immuno-oncology. PLoS ONE, 2020, 15, e0226661.	1.1	19
10	THBS1 (thrombospondin-1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2020, 24, 291-299.	0.1	23
11	Title is missing!. , 2020, 15, e0226661.		Ο
12	Title is missing!. , 2020, 15, e0226661.		0
13	Title is missing!. , 2020, 15, e0226661.		0
14	Title is missing!. , 2020, 15, e0226661.		0
15	Natural Killer Cell Recruitment and Activation Are Regulated by CD47 Expression in the Tumor Microenvironment. Cancer Immunology Research, 2019, 7, 1547-1561.	1.6	66
16	Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors. PLoS ONE, 2019, 14, e0218897.	1.1	28
17	Antisense targeting of CD47 enhances human cytotoxic T-cell activity and increases survival of miceÂbearing B16 melanoma when combined with anti-CTLA4 and tumor irradiation. Cancer Immunology, Immunotherapy, 2019, 68, 1805-1817.	2.0	40
18	Metabolomic Analysis Reveals Unique Biochemical Signatures Associated with Protection from Radiation Induced Lung Injury by Lack of cd47 Receptor Gene Expression. Metabolites, 2019, 9, 218.	1.3	9

#	Article	IF	CITATIONS
19	Endothelial nitric oxide synthase limits host immunity to control disseminated Candida albicans infections in mice. PLoS ONE, 2019, 14, e0223919.	1.1	10
20	Identification of Schlafen-11 as a Target of CD47 Signaling That Regulates Sensitivity to Ionizing Radiation and Topoisomerase Inhibitors. Frontiers in Oncology, 2019, 9, 994.	1.3	22
21	The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury. Pediatric Nephrology, 2019, 34, 2479-2494.	0.9	15
22	CD63, MHC class 1, and CD47 identify subsets of extracellular vesicles containing distinct populations of noncoding RNAs. Scientific Reports, 2018, 8, 2577.	1.6	34
23	A function-blocking CD47 antibody modulates extracellular vesicle-mediated intercellular signaling between breast carcinoma cells and endothelial cells. Journal of Cell Communication and Signaling, 2018, 12, 157-170.	1.8	31
24	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
25	CD47 Expression in Natural Killer Cells Regulates Homeostasis and Modulates Immune Response to Lymphocytic Choriomeningitis Virus. Frontiers in Immunology, 2018, 9, 2985.	2.2	52
26	Thrombospondins: Purification of human platelet thrombospondin-1. Methods in Cell Biology, 2018, 143, 347-369.	0.5	8
27	Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy. Breast Cancer Research and Treatment, 2018, 172, 69-82.	1.1	55
28	Thrombospondin-1 interactions regulate eicosanoid metabolism and signaling in cancer-related inflammation. Cancer and Metastasis Reviews, 2018, 37, 469-476.	2.7	17
29	Thrombospondin-1. , 2018, , 5400-5409.		1
30	CD47., 2018,, 919-930.		0
31	Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxidants and Redox Signaling, 2017, 27, 874-911.	2.5	28
32	Extracellular Matrix and Redox Signaling in Cellular Responses to Stress. Antioxidants and Redox Signaling, 2017, 27, 771-773.	2.5	10
33	Abstract LB-213: Thrombospondin-1 regulates intestinal microbiota and bile acid metabolism in a murine model of colorectal cancer. , 2017, , .		0
34	A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget, 2016, 7, 10133-10152.	0.8	92
35	Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the ApcMin/+ model of colon cancer. Oncogenesis, 2016, 5, e230-e230.	2.1	18
36	Divergent modulation of normal and neoplastic stem cells by thrombospondin-1 and CD47 signaling. International Journal of Biochemistry and Cell Biology, 2016, 81, 184-194.	1.2	38

#	Article	IF	CITATIONS
37	Endoplasmic Reticulum Stress Protein GRP78 Modulates Lipid Metabolism to Control Drug Sensitivity and Antitumor Immunity in Breast Cancer. Cancer Research, 2016, 76, 5657-5670.	0.4	91
38	Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1Î ² Production and Activation through CD47. Scientific Reports, 2016, 6, 19684.	1.6	73
39	Imaging Candida Infections in the Host. Methods in Molecular Biology, 2016, 1356, 69-78.	0.4	7
40	Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis. PLoS ONE, 2016, 11, e0164449.	1.1	19
41	Thrombospondin-1. , 2016, , 1-10.		0
42	CD47., 2016, , 1-12.		0
43	Abstract 1352: High-throughput matrix screening reveals synergistic chemotherapeutic combinations with blockade of CD47 to enhance cytotoxicity in breast cancer. , 2016, , .		0
44	CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS ONE, 2015, 10, e0128220.	1.1	37
45	CD47 signaling pathways controlling cellular differentiation and responses to stress. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 212-230.	2.3	148
46	CD47-Dependent Regulation of H2S Biosynthesis and Signaling in T Cells. Methods in Enzymology, 2015, 555, 145-168.	0.4	15
47	Thrombospondin-1. Circulation Research, 2015, 117, 113-115.	2.0	5
48	Signaling and stress: The redox landscape in NOS2 biology. Free Radical Biology and Medicine, 2015, 87, 204-225.	1.3	108
49	Therapeutic targeting of the thrombospondin-1 receptor CD47 to treat liver cancer. Journal of Cell Communication and Signaling, 2015, 9, 101-102.	1.8	11
50	NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay. Cancer Research, 2015, 75, 2788-2799.	0.4	43
51	CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation. Journal of Biological Chemistry, 2015, 290, 24858-24874.	1.6	76
52	Tipping off endothelial tubes: nitric oxide drives tip cells. Angiogenesis, 2015, 18, 175-189.	3.7	33
53	Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions. PLoS ONE, 2015, 10, e0126919.	1.1	5
54	Abstract 1202: Thrombospondin-1 regulates energy metabolism to increase carcinogenesis in an in vivo model of colorectal cancer. , 2015, , .		0

#	Article	IF	CITATIONS
55	Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Frontiers in Physiology, 2014, 5, 134.	1.3	29
56	CD47 in the Tumor Microenvironment Limits Cooperation between Antitumor T-cell Immunity and Radiotherapy. Cancer Research, 2014, 74, 6771-6783.	0.4	179
57	CD47 Signaling Regulates the Immunosuppressive Activity of VEGF in T Cells. Journal of Immunology, 2014, 193, 3914-3924.	0.4	103
58	Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of parkin-associated mitophagy. Cell and Bioscience, 2014, 4, 16.	2.1	54
59	Thrombospondin-1 and CD47 signaling regulate healing of thermal injury in mice. Matrix Biology, 2014, 37, 25-34.	1.5	51
60	CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biology, 2014, 37, 49-59.	1.5	114
61	Abstract 2434: Therapeutic targeting of CD47 regulates cell bioenergetics and autophagy to reduce breast tumor growth and protect against anthracycline-mediated cardiac toxicity. Cancer Research, 2014, 74, 2434-2434.	0.4	3
62	Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opinion on Therapeutic Targets, 2013, 17, 89-103.	1.5	56
63	Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biology, 2013, 32, 316-324.	1.5	79
64	Thrombospondin-1 Signaling through CD47 Inhibits Self-renewal by Regulating c-Myc and Other Stem Cell Transcription Factors. Scientific Reports, 2013, 3, 1673.	1.6	124
65	MRI confirms loss of blood–brain barrier integrity in a mouse model of disseminated candidiasis. NMR in Biomedicine, 2013, 26, 1125-1134.	1.6	27
66	Age-Associated Induction of Cell Membrane CD47 Limits Basal and Temperature-Induced Changes in Cutaneous Blood Flow. Annals of Surgery, 2013, 258, 184-191.	2.1	29
67	Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Scientific Reports, 2013, 3, 1038.	1.6	70
68	Thrombospondins and Their Receptors: Evolving Functions. Biology of Extracellular Matrix, 2013, , 221-242.	0.3	5
69	Activated CD47 regulates multiple vascular and stress responses: implications for acute kidney injury and its management. American Journal of Physiology - Renal Physiology, 2012, 303, F1117-F1125.	1.3	41
70	CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy, 2012, 8, 1628-1642.	4.3	89
71	Hydrogen Sulfide Is an Endogenous Potentiator of T Cell Activation. Journal of Biological Chemistry, 2012, 287, 4211-4221.	1.6	114
72	Programmable multivalent display of receptor ligands using peptide nucleic acid nanoscaffolds. Nature Communications, 2012, 3, 614.	5.8	94

#	Article	IF	CITATIONS
73	The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biology, 2012, 31, 162-169.	1.5	99
74	Inhibitory signaling through signal regulatory protein-α is not sufficient to explain the antitumor activities of CD47 antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2842; author reply E2844-5.	3.3	23
75	Urea Amidolyase (DUR1,2) Contributes to Virulence and Kidney Pathogenesis of Candida albicans. PLoS ONE, 2012, 7, e48475.	1.1	33
76	Endogenous Thrombospondin-1 Regulates Leukocyte Recruitment and Activation and Accelerates Death from Systemic Candidiasis. PLoS ONE, 2012, 7, e48775.	1.1	31
77	Abstract 3451: Lack of CD47 in the tumor microenvironment enhances anti-tumor adaptive immune responses when combined with ionizing radiation. , 2012, , .		0
78	Thrombospondinâ€1 signaling via CD47 regulates T lymphocyte glycosaminoglycan biosynthesis. FASEB Journal, 2012, 26, 607.3.	0.2	0
79	Hydrogen sulfide (H 2 S) regulates hypoxic signaling in T cells. FASEB Journal, 2012, 26, 758.6.	0.2	0
80	Lack of thrombospondinâ€1 increases tumorigenesis and decreases survival of in a new mouse model of colorectal cancer. FASEB Journal, 2012, 26, lb433.	0.2	0
81	Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacological Research, 2011, 63, 13-22.	3.1	61
82	sFRP-1 binds via its netrin-related motif to the N-module of thrombospondin-1 and blocks thrombospondin-1 stimulation of MDA-MB-231 breast carcinoma cell adhesion and migration. Archives of Biochemistry and Biophysics, 2011, 509, 147-156.	1.4	33
83	Age-dependent regulation of skeletal muscle mitochondria by the thrombospondin-1 receptor CD47. Matrix Biology, 2011, 30, 154-161.	1.5	60
84	Activate Rac to rescue new vessels. Blood, 2011, 117, 1444-1445.	0.6	2
85	Emerging functions of matricellular proteins. Cellular and Molecular Life Sciences, 2011, 68, 3133-3136.	2.4	35
86	Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2. Microbiology (United Kingdom), 2011, 157, 270-279.	0.7	33
87	Heparan Sulfate Modification of the Transmembrane Receptor CD47 Is Necessary for Inhibition of T Cell Receptor Signaling by Thrombospondin-1. Journal of Biological Chemistry, 2011, 286, 14991-15002.	1.6	87
88	ATP Binding to Hemoglobin Response Gene 1 Protein Is Necessary for Regulation of the Mating Type Locus in Candida albicans. Journal of Biological Chemistry, 2011, 286, 13914-13924.	1.6	2
89	Ribosomal RNA processing in <i>Candida albicans</i> . Rna, 2011, 17, 2235-2248.	1.6	20
90	CD47 applies the brakes to angiogenesis via vascular endothelial growth factor receptor-2. Cell Cycle, 2011, 10, 10-12.	1.3	32

#	Article	IF	CITATIONS
91	Matricellular Proteins. , 2011, , 369-413.		11
92	Therapeutic Targeting of CD47 to Modulate Tissue Responses to Ischemia and Radiation. Journal of Genetic Syndromes & Gene Therapy, 2011, 2, .	0.2	16
93	Thrombospndin 1 accelerates VEGFR2 trafficking and directs towards lysosomes for degradation. FASEB Journal, 2011, 25, 1091.10.	0.2	2
94	Thiolutin inhibits endothelial cell adhesion by perturbing Hsp27 interactions with components of the actin and intermediate filament cytoskeleton. Cell Stress and Chaperones, 2010, 15, 165-181.	1.2	35
95	Candida albicans heme oxygenase and its product CO contribute to pathogenesis of candidemia and alter systemic chemokine and cytokine expression. Free Radical Biology and Medicine, 2010, 49, 1561-1573.	1.3	34
96	Thrombospondinâ€1 is an inhibitor of pharmacological activation of soluble guanylate cyclase. British Journal of Pharmacology, 2010, 159, 1542-1547.	2.7	49
97	Evolutionary aspects of urea utilization by fungi. FEMS Yeast Research, 2010, 10, 209-213.	1.1	39
98	A combinatorial approach for targeted delivery using small molecules and reversible masking to bypass nonspecific uptake in vivo. Gene Therapy, 2010, 17, 1085-1097.	2.3	20
99	Nitric Oxide Signaling in Vascular Cells is Regulated through CD47 by Thrombospondin-1. , 2010, , 415-440.		0
100	Autotaxin Signaling via Lysophosphatidic Acid Receptors Contributes to Vascular Endothelial Growth Factor–Induced Endothelial Cell Migration. Molecular Cancer Research, 2010, 8, 309-321.	1.5	57
101	Thrombospondin-1 Inhibits VEGF Receptor-2 Signaling by Disrupting Its Association with CD47. Journal of Biological Chemistry, 2010, 285, 38923-38932.	1.6	199
102	The Bell-shaped Curve for Peroxynitrite-mediated Oxidation and Nitration of NO/O2â^'. Is Alive and Well. Journal of Biological Chemistry, 2010, 285, le15.	1.6	8
103	Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovascular Research, 2010, 88, 471-481.	1.8	131
104	Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells. Lung Cancer, 2010, 68, 154-160.	0.9	35
105	Evolutionary aspects of urea utilization by fungi. FEMS Yeast Research, 2010, 10, 209-213.	1.1	25
106	Amyloid-β Inhibits No-cGMP Signaling in a CD36- and CD47-Dependent Manner. PLoS ONE, 2010, 5, e15686.	1.1	49
107	Protein Expression Profiling in the Spectrum of Renal Cell Carcinomas. Journal of Cancer, 2010, 1, 184-196.	1.2	21
108	Arginine-Induced Germ Tube Formation in <i>Candida albicans</i> Is Essential for Escape from Murine Macrophage Line RAW 264.7. Infection and Immunity, 2009, 77, 1596-1605.	1.0	144

#	Article	IF	CITATIONS
109	Proteomic Analysis of Formalin-Fixed Paraffin Embedded (FFPE) Samples: Pitfalls and Potentials. Current Proteomics, 2009, 6, 122-139.	0.1	2
110	Differential Interactions of Thrombospondin-1, -2, and -4 with CD47 and Effects on cGMP Signaling and Ischemic Injury Responses. Journal of Biological Chemistry, 2009, 284, 1116-1125.	1.6	126
111	Modulation of Carcinogen Metabolism by Nitric Oxide-Aspirin 2 Is Associated with Suppression of DNA Damage and DNA Adduct Formation. Journal of Biological Chemistry, 2009, 284, 22099-22107.	1.6	19
112	Novel Dithiolethione-Modified Nonsteroidal Anti-Inflammatory Drugs in Human Hepatoma HepG2 and Colon LS180 Cells. Clinical Cancer Research, 2009, 15, 1964-1972.	3.2	28
113	Radioprotection in Normal Tissue and Delayed Tumor Growth by Blockade of CD47 Signaling. Science Translational Medicine, 2009, 1, 3ra7.	5.8	145
114	Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nature Reviews Cancer, 2009, 9, 182-194.	12.8	273
115	Dithiolethione compounds inhibit Akt signaling in human breast and lung cancer cells by increasing PP2A activity. Oncogene, 2009, 28, 3837-3846.	2.6	43
116	Molecular Regulation of Tumor Angiogenesis and Perfusion via Redox Signaling. Chemical Reviews, 2009, 109, 3099-3124.	23.0	104
117	Thrombospondin-1 and CD47 regulate blood pressure and cardiac responses to vasoactive stress. Matrix Biology, 2009, 28, 110-119.	1.5	99
118	Novel point mutations attenuate autotaxin activity. Lipids in Health and Disease, 2009, 8, 4.	1.2	6
119	Thrombospondin-1/CD47 Blockade following Ischemia-Reperfusion Injury Is Tissue Protective. Plastic and Reconstructive Surgery, 2009, 124, 1880-1889.	0.7	54
120	Thrombospondins: from structure to therapeutics. Cellular and Molecular Life Sciences, 2008, 65, 667-671.	2.4	33
121	Thrombospondins: from structure to therapeutics. Cellular and Molecular Life Sciences, 2008, 65, 728-742.	2.4	120
122	Silencing of directional migration in roundabout4 knockdown endothelial cells. BMC Cell Biology, 2008, 9, 61.	3.0	38
123	The chemical biology of nitric oxide: Implications in cellular signaling. Free Radical Biology and Medicine, 2008, 45, 18-31.	1.3	809
124	Differential effects of ABT-510 and a CD36-binding peptide derived from the type 1 repeats of thrombospondin-1 on fatty acid uptake, nitric oxide signaling, and caspase activation in vascular cells. Biochemical Pharmacology, 2008, 75, 875-882.	2.0	37
125	Treatment of liver ischemia–reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery, 2008, 144, 752-761.	1.0	72
126	TSC-6 binds via its CUB_C domain to the cell-binding domain of fibronectin and increases fibronectin matrix assembly. Matrix Biology, 2008, 27, 201-210.	1.5	34

#	Article	IF	CITATIONS
127	Calcium indirectly regulates immunochemical reactivity and functional activities of the N-domain of thrombospondin-1. Matrix Biology, 2008, 27, 339-351.	1.5	18
128	Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide - Biology and Chemistry, 2008, 19, 73-76.	1.2	172
129	Thrombospondin-1 and CD47 Limit Cell and Tissue Survival of Radiation Injury. American Journal of Pathology, 2008, 173, 1100-1112.	1.9	77
130	Thrombospondin 1 and Vasoactive Agents Indirectly Alter Tumor Blood Flow. Neoplasia, 2008, 10, 886-IN22.	2.3	41
131	Comprehensive Characterization of Heat Shock Protein 27 Phosphorylation in Human Endothelial Cells Stimulated by the Microbial Dithiole Thiolutin. Journal of Proteome Research, 2008, 7, 4384-4395.	1.8	23
132	Thrombospondin 1 Promotes Tumor Macrophage Recruitment and Enhances Tumor Cell Cytotoxicity of Differentiated U937 Cells. Cancer Research, 2008, 68, 7090-7099.	0.4	109
133	Positive Feedback between Vascular Endothelial Growth Factor-A and Autotaxin in Ovarian Cancer Cells. Molecular Cancer Research, 2008, 6, 352-363.	1.5	68
134	CD47. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 615-621.	1.1	44
135	Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood, 2008, 111, 613-623.	0.6	173
136	Blockade of Thrombospondin-1-CD47 Interactions Prevents Necrosis of Full Thickness Skin Grafts. Annals of Surgery, 2008, 247, 180-190.	2.1	82
137	Gene Silencing of CD47 and Antibody Ligation of Thrombospondin-1 Enhance Ischemic Tissue Survival in a Porcine Model. Annals of Surgery, 2008, 247, 860-868.	2.1	55
138	Enhancing Cardiovascular Dynamics by Inhibition of Thrombospondin- 1/CD47 Signaling. Current Drug Targets, 2008, 9, 833-841.	1.0	23
139	Increasing Survival of Ischemic Tissue by Targeting CD47. Circulation Research, 2007, 100, 712-720.	2.0	121
140	Hemoglobin is an effective inducer of hyphal differentiation inCandidaalbicans. Medical Mycology, 2007, 45, 61-71.	0.3	16
141	Interaction of α9β1 Integrin With Thrombospondin-1 Promotes Angiogenesis. Circulation Research, 2007, 100, 1308-1316.	2.0	110
142	Thrombospondin-1 Inhibits Nitric Oxide Signaling via CD36 by Inhibiting Myristic Acid Uptake. Journal of Biological Chemistry, 2007, 282, 15404-15415.	1.6	123
143	Blocking Thrombospondin-1/CD47 Signaling Alleviates Deleterious Effects of Aging on Tissue Responses to Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2582-2588.	1.1	88
144	Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide–mediated vascular smooth muscle relaxation. Blood, 2007, 109, 1945-1952.	0.6	109

#	Article	IF	CITATIONS
145	Nitric Oxide and Its Gatekeeper Thrombospondin-1 in Tumor Angiogenesis: Fig. 1 Clinical Cancer Research, 2007, 13, 795-798.	3.2	62
146	Trichostatin A and 5-aza-2â€2-deoxycytidine switch S1P from an inhibitor to a stimulator of motility through epigenetic regulation of S1P receptors. Cancer Letters, 2007, 250, 53-62.	3.2	11
147	Modulation of angiogenesis by dithiolethione-modified NSAIDs and valproic acid. British Journal of Pharmacology, 2007, 151, 142-151.	2.7	71
148	Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16898-16903.	3.3	188
149	Induction of a high affinity fibronectin receptor inCandida albicansby caspofungin: requirements for β (1,6) glucans and the developmental regulator Hbr1p. Medical Mycology, 2007, 45, 157-168.	0.3	6
150	Sphingosine-1-phosphate initiates rapid retraction of pseudopodia by localized RhoA activation. Cellular Signalling, 2007, 19, 1328-1338.	1.7	10
151	Increased Ischemic Tissue Survival through Targeting Thrombospondinâ€1. FASEB Journal, 2007, 21, A11.	0.2	0
152	Protein expression profiling in the spectrum of renal tumors. FASEB Journal, 2007, 21, A181.	0.2	0
153	The Biphasic Nature of Nitric Oxide Responses in Tumor Biology. Antioxidants and Redox Signaling, 2006, 8, 1329-1337.	2.5	217
154	The Activation of Metabolites of Nitric Oxide Synthase by Metals Is Both Redox and Oxygen Dependent: A New Feature of Nitrogen Oxide Signaling. Antioxidants and Redox Signaling, 2006, 8, 1363-1371.	2.5	27
155	Conformational Analysis of an α3β1 Integrin-Binding Peptide from Thrombospondin-1:  Implications for Antiangiogenic Drug Design. Journal of Medicinal Chemistry, 2006, 49, 6324-6333.	2.9	14
156	Proteomic Identification of New Biomarkers and Application in Thyroid Cytology. Acta Cytologica, 2006, 50, 518-528.	0.7	50
157	Type I collagen is a molecular target for inhibition of angiogenesis by endogenous thrombospondin-1. Oncogene, 2006, 25, 536-545.	2.6	36
158	Guanylyl cyclase-dependent chemotaxis of endothelial cells in response to nitric oxide gradients. Free Radical Biology and Medicine, 2006, 40, 1028-1033.	1.3	22
159	The Chemistry of Protein Modifications Elicited by Nitric Oxide and Related Nitrogen Oxides. , 2006, , 25-58.		4
160	Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. Journal of Cell Science, 2006, 119, 4499-4509.	1.2	51
161	Thrombospondin-1 antagonizes nitric oxide-stimulated vascular smooth muscle cell responses. Cardiovascular Research, 2006, 71, 785-793.	1.8	109
162	CD47 Is Necessary for Inhibition of Nitric Oxide-stimulated Vascular Cell Responses by Thrombospondin-1. Journal of Biological Chemistry, 2006, 281, 26069-26080.	1.6	245

#	Article	IF	CITATIONS
163	Superoxide Fluxes Limit Nitric Oxide-induced Signaling. Journal of Biological Chemistry, 2006, 281, 25984-25993.	1.6	104
164	Induction of versicanâ€thrombospondinâ€1 complexes during endoplasmic reticulum stress on vascular smooth muscle cells. FASEB Journal, 2006, 20, A516.	0.2	0
165	Nitric oxide in wound-healing. Microsurgery, 2005, 25, 442-451.	0.6	97
166	The N-terminal Module of Thrombospondin-1 Interacts with the Link Domain of TSG-6 and Enhances Its Covalent Association with the Heavy Chains of Inter-α-trypsin Inhibitor. Journal of Biological Chemistry, 2005, 280, 30899-30908.	1.6	37
167	Novel Integrin Antagonists Derived from Thrombospondins. Current Pharmaceutical Design, 2005, 11, 849-866.	0.9	32
168	Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13141-13146.	3.3	244
169	Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13147-13152.	3.3	269
170	Endogenous thrombospondin-1 is not necessary for proliferation but is permissive for vascular smooth muscle cell responses to platelet-derived growth factor. Matrix Biology, 2005, 24, 110-123.	1.5	55
171	Endothelial monocyte activating polypeptide-II induced gene expression changes in endothelial cells. Cytokine, 2005, 30, 347-358.	1.4	27
172	α 4 β 1 Integrin Mediates Selective Endothelial Cell Responses to Thrombospondins 1 and 2 In Vitro and Modulates Angiogenesis In Vivo. Circulation Research, 2004, 94, 462-470.	2.0	93
173	Early Genetic Mechanisms Underlying the Inhibitory Effects of Endostatin and Fumagillin on Human Endothelial Cells. Genome Research, 2004, 14, 1585-1593.	2.4	35
174	Heme Oxygenase in Candida albicans Is Regulated by Hemoglobin and Is Necessary for Metabolism of Exogenous Heme and Hemoglobin to α-Biliverdin. Journal of Biological Chemistry, 2004, 279, 3426-3433.	1.6	90
175	Identification of Novel β1 Integrin Binding Sites in the Type 1 and Type 2 Repeats of Thrombospondin-1. Journal of Biological Chemistry, 2004, 279, 41734-41743.	1.6	81
176	Hemoglobin Regulates Expression of an Activator of Mating-Type Locus α Genes in Candida albicans. Eukaryotic Cell, 2004, 3, 764-775.	3.4	38
177	Thrombospondin-1 is a major activator of TGF-β in fibrotic renal disease in the rat in vivo. Kidney International, 2004, 65, 459-468.	2.6	124
178	Differential Expression of S100C in Thyroid Lesions. International Journal of Surgical Pathology, 2004, 12, 107-115.	0.4	20
179	Functional regulation of T lymphocytes by modulatory extracellular matrix proteins. International Journal of Biochemistry and Cell Biology, 2004, 36, 1126-1134.	1.2	28
180	Sensing the host environment: recognition of hemoglobin by the pathogenic yeast Candida albicans. Archives of Biochemistry and Biophysics, 2004, 426, 148-156.	1.4	49

#	Article	IF	CITATIONS
181	Fibronectin-Based Masking Molecule Blocks Platelet Adhesion. Bioconjugate Chemistry, 2003, 14, 703-706.	1.8	6
182	Recognition of the N-terminal Modules of Thrombospondin-1 and Thrombospondin-2 by α6β1 Integrin. Journal of Biological Chemistry, 2003, 278, 40679-40687.	1.6	90
183	Angiogenesis inhibitors target the endothelial cell cytoskeleton through altered regulation of heat shock protein 27 and cofilin. Cancer Research, 2003, 63, 6405-12.	0.4	85
184	Interactions of thrombospondins with α4β1 integrin and CD47 differentially modulate T cell behavior. Journal of Cell Biology, 2002, 157, 509-519.	2.3	149
185	Regulation of Integrin Function by CD47 Ligands. Journal of Biological Chemistry, 2002, 277, 42859-42866.	1.6	80
186	Enhanced Gene Expression in Breast Cancer Cells in Vitro and Tumors in Vivo. Molecular Therapy, 2002, 6, 783-792.	3.7	43
187	Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Research, 2002, 62, 1541-8.	0.4	81
188	Conformational Regulation of the Fibronectin Binding and α3β1 Integrin-mediated Adhesive Activities of Thrombospondin-1. Journal of Biological Chemistry, 2001, 276, 27913-27922.	1.6	29
189	Thrombospondin-1 Inhibits TCR-Mediated T Lymphocyte Early Activation. Journal of Immunology, 2001, 166, 2427-2436.	0.4	103
190	Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through the urokinase plasminogen activator receptor. British Journal of Cancer, 2000, 83, 298-306.	2.9	52
191	Cell Contact–dependent Activation of α3β1 Integrin Modulates Endothelial Cell Responses to Thrombospondin-1. Molecular Biology of the Cell, 2000, 11, 2885-2900.	0.9	143
192	Specificities of Heparin-binding Sites from the Amino-Terminus and Type 1 Repeats of Thrombospondin-1. Archives of Biochemistry and Biophysics, 2000, 374, 13-23.	1.4	29
193	Structural Requirements for Hemoglobin To Induce Fibronectin Receptor Expression inCandidaalbicans. Biochemistry, 2000, 39, 16110-16118.	1.2	25
194	Inhibition of Angiogenesis by Thrombospondin-1 Is Mediated by 2 Independent Regions Within the Type 1 Repeats. Circulation, 1999, 100, 1423-1431.	1.6	301
195	Identification of an $\hat{1}\pm3\hat{1}^21$ Integrin Recognition Sequence in Thrombospondin-1. Journal of Biological Chemistry, 1999, 274, 24080-24086.	1.6	77
196	Pro-adhesive and Chemotactic Activities of Thrombospondin-1 for Breast Carcinoma Cells Are Mediated by α3β1 Integrin and Regulated by Insulin-like Growth Factor-1 and CD98. Journal of Biological Chemistry, 1999, 274, 11408-11416.	1.6	111
197	Cooperation between Thrombospondin-1 Type 1 Repeat Peptides and αvβ3 Integrin Ligands to Promote Melanoma Cell Spreading and Focal Adhesion Kinase Phosphorylation. Journal of Biological Chemistry, 1999, 274, 22755-22762.	1.6	55
198	Thrombospondin peptides are potent inhibitors of mesangial and glomerular endothelial cell proliferation in vitro and in vivo. Kidney International, 1999, 55, 2236-2249.	2.6	22

#	Article	IF	CITATIONS
199	Treatment of Experimental Brain Tumors with Trombospondin-1 Derived Peptides: an In Vivo Imaging Study. Neoplasia, 1999, 1, 438-445.	2.3	41
200	Hemoglobin Induces Binding of Several Extracellular Matrix Proteins to Candida albicans. Journal of Biological Chemistry, 1998, 273, 5638-5644.	1.6	38
201	Hemoglobin Differentially Induces Binding of Candida, Trichosporon, and Saccharomyces Species to Fibronectin. Journal of Infectious Diseases, 1998, 178, 497-502.	1.9	4
202	Hemoglobin-Induced Binding of <i>Candida albicans</i> to the Cell-Binding Domain of Fibronectin Is Independent of the Arg-Gly-Asp Sequence. Infection and Immunity, 1998, 66, 1904-1909.	1.0	20
203	Cellular Internalization and Degradation of Thrombospondin-1 Is Mediated by the Amino-terminal Heparin Binding Domain (HBD). Journal of Biological Chemistry, 1997, 272, 6784-6791.	1.6	111
204	Efficient gene targeting in mouse embryonic stem cells. Gene Therapy, 1997, 4, 700-709.	2.3	38
205	Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nature Biotechnology, 1997, 15, 647-652.	9.4	737
206	Antiproliferative and antitumor activities of Dâ€reverse peptides derived from the second typeâ€1 repeat of thrombospondinâ€1. Chemical Biology and Drug Design, 1997, 50, 210-221.	1.2	63
207	Regulation of tumor growth and metastasis by thrombospondinâ \in I. FASEB Journal, 1996, 10, 1183-1191.	0.2	241
208	Common cryopreservation media deplete corneal endothelial cell plasma membrane Na+,K+ATPase activity. Current Eye Research, 1996, 15, 263-271.	0.7	7
209	Regulation of Transforming Growth Factor-β Activation by Discrete Sequences of Thrombospondin 1. Journal of Biological Chemistry, 1995, 270, 7304-7310.	1.6	386
210	Infants and Young Children with Cystic Fibrosis Have High Levels of Serum Sialyl Lewisa Antigen. Pediatric Research, 1995, 37, 460-464.	1.1	6
211	Recognition of Type 1 Chain Oligosaccharides and Lacto-Series Glycolipids by an Antibody to Human Secretory Component. Archives of Biochemistry and Biophysics, 1995, 322, 299-305.	1.4	1
212	Apolipoprotein E (ApoE), a novel heparin-binding protein inhibits the development of Kaposi's sarcoma-like lesions in BALB/c nu/nu mice Journal of Experimental Medicine, 1994, 180, 1949-1954.	4.2	24
213	Purification of thrombospondin from human platelets. Cytotechnology, 1994, 16, 217-222.	0.3	38
214	Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. International Journal of Cancer, 1994, 59, 191-195.	2.3	210
215	Apolipoprotein E: A potent inhibitor of endothelial and tumor cell proliferation. Journal of Cellular Biochemistry, 1994, 54, 299-308.	1.2	109
216	Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. Journal of Cellular Biochemistry, 1993, 53, 74-84.	1.2	153

#	Article	IF	CITATIONS
217	Specific simple sugars promote chemotaxis and chemokinesis of corneal endothelial cells. Journal of Cellular Physiology, 1993, 157, 359-366.	2.0	11
218	Inhibition of fibronectin binding and fibronectin-mediated cell adhesion to collagen by a peptide from the second type I repeat of thrombospondin Journal of Cell Biology, 1993, 121, 469-477.	2.3	61
219	Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 3040-3044.	3.3	152
220	Characterization of the adenine binding sites of two Dolichos biflorus lectins. Biochemistry, 1992, 31, 6938-6942.	1.2	45
221	Antigenic and Calcium Binding Properties of a Peptide Containing the Essential Cysteine in Lima Bean Lectin. Plant Physiology, 1991, 95, 286-290.	2.3	4
222	Platelets Adhere to Sulfatides by von Willebrand Factor Dependent and Independent Mechanisms. Thrombosis and Haemostasis, 1991, 65, 581-587.	1.8	7
223	Isolation and Characterization of Mucin from the Serum of Cystic Fibrosis Patients. American Journal of Respiratory Cell and Molecular Biology, 1990, 2, 373-379.	1.4	5
224	Falciparum malaria parasitized erythrocytes bind to a carboxy-terminal thrombospondin fragment and not the amino-terminal heparin-binding region. Molecular and Biochemical Parasitology, 1990, 40, 173-181.	0.5	14
225	Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor Journal of Cell Biology, 1990, 111, 765-772.	2.3	392
226	Interactions of Respiratory Pathogens with Host Cell Surface and Extracellular Matrix Components. American Journal of Respiratory Cell and Molecular Biology, 1990, 3, 181-186.	1.4	27
227	Serum Mucin-Associated Antigen Levels of Cystic Fibrosis Patients Are Related to Their Ages and Clinical Statuses. Pediatric Research, 1989, 25, 49-54.	1.1	9
228	Structural study of the sugar chains of human platelet thrombospondin. Archives of Biochemistry and Biophysics, 1989, 270, 302-312.	1.4	33
229	Mono-Sulfated Globotetraosylceramide from Human Kidney1. Journal of Biochemistry, 1989, 106, 878-886.	0.9	12
230	Studies of the Receptors on Melanoma Cells for Plasmodium Falciparum Infected Erythrocytes. American Journal of Tropical Medicine and Hygiene, 1989, 40, 119-127.	0.6	29
231	Glycoconjugates and cell adhesion: the adhesive proteins laminin, thrombospondin and bon Willebrand's factor bind specifically to sulfated glycolipids. Biochimie, 1988, 70, 1651-1659.	1.3	31
232	Sulfated glycolipids and cell adhesion. Archives of Biochemistry and Biophysics, 1988, 267, 405-415.	1.4	105
233	Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Archives of Biochemistry and Biophysics, 1988, 260, 493-496.	1.4	200
234	Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6157-6161.	3.3	451

#	Article	IF	CITATIONS
235	Platelet thrombospondin mediates attachment and spreading of human melanoma cells Journal of Cell Biology, 1987, 104, 131-139.	2.3	183
236	Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains Journal of Cell Biology, 1987, 105, 2409-2415.	2.3	200
237	[38] Sulfatide-binding proteins. Methods in Enzymology, 1987, 138, 473-483.	0.4	26
238	Properties of the lectin from the hog peanut (Amphicarpaea bracteata). Archives of Biochemistry and Biophysics, 1987, 255, 194-200.	1.4	13
239	Thrombospondin Binding by Parasitized Erythrocyte Isolates in Falciparum Malaria. American Journal of Tropical Medicine and Hygiene, 1987, 36, 228-233.	0.6	26
240	A serum test for cystic fibrosis using monoclonal antibody 19-9. Archives of Biochemistry and Biophysics, 1986, 245, 292-294.	1.4	26
241	Gangliosides indirectly inhibit the binding of laminin to sulfatides. Archives of Biochemistry and Biophysics, 1986, 250, 498-504.	1.4	12
242	Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry, 1986, 25, 5595-5601.	1.2	221
243	Specificity of adenine binding to lima bean lectin. Phytochemistry, 1986, 25, 589-593.	1.4	22
244	Immunochemical studies on the combining site of the blood group A-special lima bean lectin. Carbohydrate Research, 1986, 151, 247-260.	1.1	17
245	Sulfatide-binding proteins. Chemistry and Physics of Lipids, 1986, 42, 173-183.	1.5	43
246	Laminin binds specifically to sulfated glycolipids Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1306-1310.	3.3	157
247	Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature, 1985, 318, 64-66.	13.7	363
248	Immunoreactivities of human isoferritins. Clinica Chimica Acta, 1985, 150, 41-51.	0.5	1
249	Reexamination of the carbohydrate binding stoichiometry of lima bean lectin. Archives of Biochemistry and Biophysics, 1984, 230, 316-320.	1.4	11
250	Binding of hydrophobic ligands to plant lectins: Titration with arylaminonaphthalenesulfonates. Archives of Biochemistry and Biophysics, 1983, 224, 479-484.	1.4	58
251	Isolation of laminin by affinity chromatography on immobilized Griffonia simplicifolia I lectin. FEBS Letters, 1982, 142, 194-198.	1.3	85