Ghulam Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3583232/publications.pdf

Version: 2024-02-01

87 papers

3,226 citations

30 h-index 54 g-index

88 all docs 88 docs citations

88 times ranked 4573 citing authors

#	Article	IF	Citations
1	Preparation and oxidation of aluminum powders with surface alumina replaced by iron coating. Journal of Energetic Materials, 2022, 40, 243-257.	2.0	5
2	Investigation of dielectric relaxation behavior, electric modulus and a.c conductivity of low doped polyaniline cadmium oxide (PANI-CdO) nanocomposites. Polymer Bulletin, 2022, 79, 6581-6600.	3.3	4
3	Strategy to utilize amorphous phase of semiconductor toward excellent and reliable photochemical water splitting performance: Roles of interface dipole moment and reaction parallelization. International Journal of Energy Research, 2022, 46, 3674-3685.	4.5	5
4	Free-Standing Petal-Shaped Metallic 1T-Phase Molybdenum Sulfide Anchored on a Nitrogen-Doped Carbon Cloth for High Rate Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1106-1113.	5.1	3
5	Highly efficient tin fluoride nanocomposite with conductive carbon as a high performance anode for Li-ion batteries. Journal of Alloys and Compounds, 2022, 900, 163447.	5.5	14
6	Recent Advances in Enhanced Performance of Niâ€Rich Cathode Materials for Liâ€lon Batteries: A Review. Energy Technology, 2022, 10, .	3.8	17
7	Sulfurâ€doped molybdenum phosphide as fast dis/charging anode for Liâ€ion and Naâ€ion batteries. International Journal of Energy Research, 2022, 46, 8452-8463.	4.5	7
8	Transformation of diffusive to capacitive kinetics in nanoscale modified Co-TiO2@CNTs composites safeguarding steady reversible capacity as sodium-ion battery anode. Journal of Alloys and Compounds, 2022, 902, 163772.	5.5	7
9	Metal oxide–carbon composite electrode materials for rechargeable batteries. , 2022, , 237-254.		0
10	Mn0.06Co2.94O4 nano-architectures anchored on reduced graphene oxide as highly efficient hybrid electrodes for supercapacitors. Journal of Energy Storage, 2022, 50, 104298.	8.1	18
11	Self-standing Co2.4Sn0.6O4 nano rods as high performance anode materials for sodium-ion battery and investigation on its reaction mechanism. Chemical Engineering Journal, 2022, 439, 135791.	12.7	4
12	Electrochemical investigation of a novel quaternary composite based on dichalcogenides, reduced graphene oxide, and polyaniline as a high-performance electrode for hybrid supercapacitor applications. Journal of Alloys and Compounds, 2022, 909, 164854.	5.5	11
13	Investigating the energy storage performance of the ⟨scp⟩ ZnMn ⟨sub⟩2⟨ sub⟩ O ⟨sub⟩4⟨ sub⟩ ⟨ scp⟩ anode for its potential application in lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 6444-6456.	4.5	5
14	Efficient magnetoelectric dispersion in Ni and Co co-doped BiFeO3 multiferroics. Physica B: Condensed Matter, 2021, 602, 412572.	2.7	11
15	Dual coating strategy of CoS 2 @Co@C toward fast insertion/extraction anode material for sodiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 5283-5292.	4.5	7
16	Inâ€situ formation of an efficient trimetallic (<scp>Cu</scp>  <scp>Zn</scp>  <scp>Ag</scp>) electrocatalyst for water oxidation. International Journal of Energy Research, 2021, 45, 2931-2944.	4.5	4
17	Pulsed Laser Confinement of Single Atomic Catalysts on Carbon Nanotube Matrix for Enhanced Oxygen Evolution Reaction. ACS Nano, 2021, 15, 4416-4428.	14.6	29
18	Au/TiN nanostructure materials for energy storage applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 5810-5820.	2.2	0

#	Article	IF	Citations
19	Highly Stable Zero-Stain Na ₂ MoO ₄ /C Nanocomposite Anode for Long Life Na-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4638-4645.	5.1	1
20	Highly Selective O ₂ Reduction to H ₂ O ₂ Catalyzed by Cobalt Nanoparticles Supported on Nitrogen-Doped Carbon in Alkaline Solution. ACS Catalysis, 2021, 11, 5035-5046.	11.2	36
21	Electrochemical storage behavior of <scp> NiCo ₂ O ₄ </scp> nanoparticles anode with structural and morphological evolution in lithiumâ€ion and sodiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 15036-15048.	4.5	10
22	Photo-electrochemical water splitting through graphene-based ZnS composites for H2 production. Journal of Electroanalytical Chemistry, 2021, 889, 115223.	3.8	19
23	Amorphous Nickel–Iron Borophosphate for a Robust and Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2100624.	19.5	120
24	An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor. Energies, 2021, 14, 3237.	3.1	5
25	CNTs embedded in layered Zn-doped Co3O4 nano-architectures as an efficient hybrid anode material for SIBs. Journal of Alloys and Compounds, 2021, 867, 158730.	5.5	15
26	Investigation of the Electrochemical Properties of Ni0.5Zn0.5Fe2O4 as Binder-Based and Binder-Free Electrodes of Supercapacitors. Energies, 2021, 14, 3297.	3.1	10
27	Facile Preparation of Fe3O4 Nanoparticles/Reduced Graphene Oxide Composite as an Efficient Anode Material for Lithium-lon Batteries. Coatings, 2021, 11, 836.	2.6	8
28	Evaluation of mobility range of charge carriers in Nd-substituted. Ceramics International, 2021, 47, 34314-34322.	4.8	5
29	ZIF 67 derived Co–Sn composites with N-doped nanoporous carbon as anode material for Li-ion batteries. Materials Chemistry and Physics, 2021, 270, 124824.	4.0	14
30	Ni-doped Co3O4 spheres decorated on CNTs nest-like conductive framework as efficiently stable hybrid anode for Na-ion batteries. Ceramics International, 2021, 47, 27854-27862.	4.8	8
31	Methane decomposition for hydrogen production over biomass fly ash-based CeO2 nanowires promoted cobalt catalyst. Journal of Environmental Chemical Engineering, 2021, 9, 105816.	6.7	24
32	Development and analysis of electric vehicle driving cycle for hilly urban areas. Transportation Research, Part D: Transport and Environment, 2021, 99, 103025.	6.8	12
33	Dielectric and impedance spectroscopic analysis of $Sn1\hat{a}^{\circ}xZrxO2$ ferromagnetically-like behavior semiconductors. Journal of Magnetism and Magnetic Materials, 2021, 537, 168227.	2.3	0
34	Co ₂ GeO ₄ nanocomposites with reduced graphene oxide and carbon nanotubes as high-performance anodes for Na-ion batteries. RSC Advances, 2021, 11, 13004-13013.	3.6	3
35	Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni–Fe–Al–Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. Journal of Materials Chemistry A, 2021, 9, 27332-27346.	10.3	33
36	Development of Electromagnetic Shielding Material from Conductive Blends of Polyaniline/Polystyreneâ€isopreneâ€styrene Copolymer. ChemistrySelect, 2021, 6, 12455-12460.	1.5	0

#	Article	IF	CITATIONS
37	Synergetic Effect of Binary ZnS:SnS Composites with Reduced Graphene Oxide and Carbon Nanotubes as Anodes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 13868-13877.	5.1	10
38	Hydrothermal synthesis of neodymium oxide nanoparticles and its nanocomposites with manganese oxide as electrode materials for supercapacitor application. Journal of Alloys and Compounds, 2020, 815, 152104.	5.5	43
39	Entangled reduced graphene oxide nanosheets as an insertion anode with large interlayer spacing for high rate Na-ion batteries. Ceramics International, 2020, 46, 27711-27716.	4.8	10
40	ZIF-67 derived nitrogen doped CNTs decorated with sulfur and Ni(OH)2 as potential electrode material for high-performance supercapacitors. Electrochimica Acta, 2020, 364, 137147.	5.2	48
41	Dualâ€Phase Engineering of Nickel Borideâ€Hydroxide Nanoparticles toward Highâ€Performance Water Oxidation Electrocatalysts. Advanced Functional Materials, 2020, 30, 2004330.	14.9	44
42	High-rate sodium insertion/extraction into silicon oxycarbide-reduced graphene oxide. New Journal of Chemistry, 2020, 44, 14035-14040.	2.8	12
43	NaFeSnO4: Tunnel structured anode material for rechargeable sodium-ion batteries. Electrochemistry Communications, 2020, 121, 106873.	4.7	10
44	Electrochemical performance of Li ⁺ insertion/extraction in Ni-substituted ZnCo ₂ O ₄ as an emerging highly efficient anode material. RSC Advances, 2020, 10, 28550-28559.	3.6	7
45	A high voltage Li-ion full-cell battery with MnCo2O4/LiCoPO4 electrodes. Ceramics International, 2020, 46, 26147-26155.	4.8	10
46	Optical and dielectric modulus Study of PPy-DBSA/Y2O3 composites. Journal of Materials Science: Materials in Electronics, 2020, 31, 22365-22374.	2.2	6
47	Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation. Nano Energy, 2020, 75, 104945.	16.0	47
48	Partial Dehydration in Hydrated Tungsten Oxide Nanoplates Leads to Excellent and Robust Bifunctional Oxygen Reduction and Hydrogen Evolution Reactions in Acidic Media. ACS Sustainable Chemistry and Engineering, 2020, 8, 9507-9518.	6.7	23
49	Facile synthesis and electrochemical study of a ternary hybrid PANI/GNP/MnO2 as supercapacitor electrode material. Journal of Materials Science: Materials in Electronics, 2020, 31, 12455-12466.	2.2	17
50	NiCo–N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell. Renewable Energy, 2020, 154, 508-516.	8.9	69
51	Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes. Energy Storage Materials, 2020, 28, 101-111.	18.0	43
52	High-rate lithium storage and kinetic investigations of a cubic Mn2SnO4@Carbon nanotube composite anode. Journal of Alloys and Compounds, 2020, 823, 153789.	5.5	8
53	Effect of the interfacial protective layer on the NaFe _{0.5} Ni _{0.5} O ₂ cathode for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 13964-13970.	10.3	19
54	Electrical Properties and Characteristics of Polypyrrole Cadmium Oxide (PPy-CdO) Nanocomposite Schottky Diodes. Polymer Science - Series A, 2020, 62, 543-549.	1.0	2

#	Article	IF	Citations
55	Oxygen Evolution Reaction of Co-Mn-O Electrocatalyst Prepared by Solution Combustion Synthesis. Catalysts, 2019, 9, 564.	3.5	13
56	Unveiling the mechanism of sodium ion storage for needle-shaped ZnxCo3â^'xO4 nanosticks as anode materials. Nanoscale, 2019, 11, 1065-1073.	5.6	14
57	Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. Journal of Materials Chemistry A, 2019, 7, 3592-3602.	10.3	81
58	Axial expansion of Ni-doped TiO2 nanorods grown on carbon nanotubes for favourable lithium-ion intercalation. Chemical Engineering Journal, 2019, 375, 122021.	12.7	9
59	Elucidating the performance-limiting electrode for all-vanadium redox flow batteries through in-depth physical and electrochemical analyses. Journal of Industrial and Engineering Chemistry, 2019, 80, 450-460.	5.8	13
60	Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy and Environmental Science, 2019, 12, 2443-2454.	30.8	315
61	Anionic Redox Activity as a Key Factor in the Performance Degradation of NaFeO ₂ Cathodes for Sodium Ion Batteries. Chemistry of Materials, 2019, 31, 3644-3651.	6.7	64
62	Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles. Journal of Power Sources, 2019, 419, 229-236.	7.8	33
63	Kinetic and Electrochemical Reaction Mechanism Investigations of Rodlike CoMoO ₄ Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3843-3851.	8.0	38
64	Electrochemical Mechanism Investigation of Cu ₂ MoS ₄ Hollow Nanospheres for Fast and Stable Sodium Ion Storage. Advanced Functional Materials, 2019, 29, 1807753.	14.9	72
65	An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. Journal of Carbon Research, 2019, 5, 3.	2.7	128
66	Facile Metal Coordination of Active Site Imprinted Nitrogen Doped Carbons for the Conservative Preparation of Nonâ€Noble Metal Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2018, 8, 1701771.	19.5	73
67	Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide–Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis, 2018, 8, 4091-4102.	11,2	116
68	Probing the Sodium Insertion/Extraction Mechanism in a Layered NaVO ₃ Anode Material. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18717-18725.	8.0	33
69	A 4 V Liâ€lon Battery using All‧pinelâ€Based Electrodes. ChemSusChem, 2018, 11, 2165-2170.	6.8	10
70	Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles. Applied Energy, 2018, 229, 910-921.	10.1	76
71	Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Scientific Reports, 2017, 7, 40910.	3.3	49
72	Lithium intercalation mechanism into FeF3·0.5H2O as a highly stable composite cathode material. Scientific Reports, 2017, 7, 42237.	3.3	24

#	Article	IF	CITATIONS
73	Cobalt-doped pyrochlore-structured iron fluoride as a highly stable cathode material for lithium-ion batteries. Electrochimica Acta, 2017, 238, 49-55.	5.2	35
74	Study on the Electrochemical Reaction Mechanism of NiFe ₂ O ₄ as a High-Performance Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14833-14843.	8.0	92
75	Superior shuttling of lithium and sodium ions in manganese-doped titania @ functionalized multiwall carbon nanotube anodes. Nanoscale, 2017, 9, 9859-9871.	5.6	33
76	Honeycomb-layer structured Na ₃ Ni ₂ BiO ₆ as a high voltage and long life cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 1300-1310.	10.3	67
77	Elucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries. Nano Energy, 2017, 42, 106-114.	16.0	41
78	Improving the sodium storage capacity of tunnel structured NaxFexTi2-xO4 ($x\hat{A}$ = 1, 0.9 & amp; 0.8) anode materials by tuning sodium deficiency. Journal of Power Sources, 2017, 366, 115-122.	7.8	21
79	Achieving high capacity and rate capability in layered lithium transition metal oxide cathodes for lithium-ion batteries. Journal of Power Sources, 2017, 360, 575-584.	7.8	20
80	Metalâ€Organic Framework Cathodes Based on a Vanadium Hexacyanoferrate Prussian Blue Analogue for Highâ€Performance Aqueous Rechargeable Batteries. Advanced Energy Materials, 2017, 7, 1601491.	19.5	140
81	Polythiophene-Wrapped Olivine NaFePO ₄ as a Cathode for Na-Ion Batteries. ACS Applied Materials & Description of the Company of the	8.0	93
82	Probing the Sodiation-Desodiation Reactions in Nano-sized Iron Fluoride Cathode. Electrochimica Acta, 2016, 191, 307-316.	5.2	30
83	Investigation of the Na Intercalation Mechanism into Nanosized V ₂ O ₅ /C Composite Cathode Material for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 6032-6039.	8.0	79
84	An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10258-10266.	10.3	65
85	Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Letters, 2014, 14, 416-422.	9.1	422
86	Effect of Co substitution on the structural, electrical, and magnetic properties of Bi0.9La0.1FeO3 by sol-gel synthesis. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 166-171.	4.9	21
87	Electrochemical investigations of a highâ€capacity Na 2 CrO 4 /C nanocomposite anode for sodiumâ€ion batteries. International Journal of Energy Research, 0, , .	4.5	3