Chun-Wa Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3583215/publications.pdf

Version: 2024-02-01

147801 128289 6,847 61 31 citations h-index g-index papers

62 62 62 8079 docs citations times ranked citing authors all docs

60

#	Article	lF	Citations
1	Suppression of inflammation by a synthetic histone mimic. Nature, 2010, 468, 1119-1123.	27.8	1,377
2	Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011, 478, 529-533.	27.8	1,354
3	Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nature Chemical Biology, 2015, 11, 189-191.	8.0	544
4	Discovery and Characterization of Small Molecule Inhibitors of the BET Family Bromodomains. Journal of Medicinal Chemistry, 2011, 54, 3827-3838.	6.4	318
5	Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science, 2020, 368, 387-394.	12.6	274
6	Discovery of Epigenetic Regulator I-BET762: Lead Optimization to Afford a Clinical Candidate Inhibitor of the BET Bromodomains. Journal of Medicinal Chemistry, 2013, 56, 7501-7515.	6.4	271
7	Identification of a novel series of BET family bromodomain inhibitors: Binding mode and profile of I-BET151 (GSK1210151A). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2968-2972.	2.2	183
8	Fragment-Based Discovery of Bromodomain Inhibitors Part 1: Inhibitor Binding Modes and Implications for Lead Discovery. Journal of Medicinal Chemistry, 2012, 55, 576-586.	6.4	182
9	Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. Journal of Medicinal Chemistry, 2016, 59, 1425-1439.	6.4	177
10	Fragment-Based Discovery of Bromodomain Inhibitors Part 2: Optimization of Phenylisoxazole Sulfonamides. Journal of Medicinal Chemistry, 2012, 55, 587-596.	6.4	174
11	BET Inhibition Silences Expression of MYCN and BCL2 and Induces Cytotoxicity in Neuroblastoma Tumor Models. PLoS ONE, 2013, 8, e72967.	2.5	167
12	The Discovery of I-BET726 (GSK1324726A), a Potent Tetrahydroquinoline ApoA1 Up-Regulator and Selective BET Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 8111-8131.	6.4	159
13	The Commonly Used PI3-Kinase Probe LY294002 Is an Inhibitor of BET Bromodomains. ACS Chemical Biology, 2014, 9, 495-502.	3.4	97
14	Discovery of Tetrahydroquinoxalines as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the Second Bromodomain. Journal of Medicinal Chemistry, 2018, 61, 4317-4334.	6.4	94
15	Structure-Based Optimization of Naphthyridones into Potent ATAD2 Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6151-6178.	6.4	81
16	1,3-Dimethyl Benzimidazolones Are Potent, Selective Inhibitors of the BRPF1 Bromodomain. ACS Medicinal Chemistry Letters, 2014, 5, 1190-1195.	2.8	78
17	Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 5649-5673.	6.4	75
18	Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical Probe. Journal of Medicinal Chemistry, 2017, 60, 695-709.	6.4	70

#	Article	IF	Citations
19	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie - International Edition, 2016, 55, 11382-11386.	13.8	67
20	The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. MedChemComm, 2014, 5, 342-351.	3.4	66
21	GSK789: A Selective Inhibitor of the First Bromodomains (BD1) of the Bromo and Extra Terminal Domain (BET) Proteins. Journal of Medicinal Chemistry, 2020, 63, 9045-9069.	6.4	59
22	Structural Insights into PROTAC-Mediated Degradation of Bcl-xL. ACS Chemical Biology, 2020, 15, 2316-2323.	3.4	58
23	Discovery and Characterisation of Highly Cooperative FAKâ€Degrading PROTACs. Angewandte Chemie - International Edition, 2021, 60, 23327-23334.	13.8	58
24	GSK6853, a Chemical Probe for Inhibition of the BRPF1 Bromodomain. ACS Medicinal Chemistry Letters, 2016, 7, 552-557.	2.8	54
25	Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice. Journal of Experimental Medicine, 2015, 212, 1771-1781.	8.5	51
26	Discovery of a Bromodomain and Extraterminal Inhibitor with a Low Predicted Human Dose through Synergistic Use of Encoded Library Technology and Fragment Screening. Journal of Medicinal Chemistry, 2020, 63, 714-746.	6.4	45
27	Progress in the Discovery of Small-Molecule Inhibitors of Bromodomain–Histone Interactions. Journal of Biomolecular Screening, 2011, 16, 1170-1185.	2.6	43
28	The Optimization of a Novel, Weak Bromo and Extra Terminal Domain (BET) Bromodomain Fragment Ligand to a Potent and Selective Second Bromodomain (BD2) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 9093-9126.	6.4	41
29	Design and Synthesis of a Highly Selective and <i>In Vivo</i> -Capable Inhibitor of the Second Bromodomain of the Bromodomain and Extra Terminal Domain Family of Proteins. Journal of Medicinal Chemistry, 2020, 63, 9070-9092.	6.4	40
30	Small Molecule Bromodomain Inhibitors. Progress in Medicinal Chemistry, 2012, 51, 1-55.	10.4	39
31	Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. Journal of Medicinal Chemistry, 2020, 63, 9020-9044.	6.4	38
32	Magnesium Fluoride-Dependent Binding of Small G Proteins to Their GTPase-Activating Proteinsâ€. Biochemistry, 1999, 38, 14981-14987.	2.5	33
33	Development of a small molecule that corrects misfolding and increases secretion of Z α ⟨sub⟩ 1⟨/sub⟩ â€antitrypsin. EMBO Molecular Medicine, 2021, 13, e13167.	6.9	33
34	Naphthyridines as Novel BET Family Bromodomain Inhibitors. ChemMedChem, 2014, 9, 580-589.	3.2	32
35	Discovery of a Highly Selective BET BD2 Inhibitor from a DNA-Encoded Library Technology Screening Hit. Journal of Medicinal Chemistry, 2021, 64, 10806-10833.	6.4	31
36	Bromodomains: a new target class for small molecule drug discovery. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e111-e120.	0.5	30

#	Article	IF	CITATIONS
37	Structure-Guided Identification of Resistance Breaking Antimalarial Nâ€'Myristoyltransferase Inhibitors. Cell Chemical Biology, 2019, 26, 991-1000.e7.	5.2	26
38	Discovery of a Novel Bromodomain and Extra Terminal Domain (BET) Protein Inhibitor, I-BET282E, Suitable for Clinical Progression. Journal of Medicinal Chemistry, 2021, 64, 12200-12227.	6.4	26
39	Integration of Lead Discovery Tactics and the Evolution of the Lead Discovery Toolbox. SLAS Discovery, 2018, 23, 881-897.	2.7	25
40	GSK973 Is an Inhibitor of the Second Bromodomains (BD2s) of the Bromodomain and Extra-Terminal (BET) Family. ACS Medicinal Chemistry Letters, 2020, 11, 1581-1587.	2.8	25
41	Application of Atypical Acetyl-lysine Methyl Mimetics in the Development of Selective Inhibitors of the Bromodomain-Containing Protein 7 (BRD7)/Bromodomain-Containing Protein 9 (BRD9) Bromodomains. Journal of Medicinal Chemistry, 2020, 63, 5816-5840.	6.4	21
42	Expanding Bromodomain Targeting into Neglected Parasitic Diseases. ACS Infectious Diseases, 2021, 7, 2953-2958.	3.8	20
43	A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. Journal of Medicinal Chemistry, 2019, 62, 7506-7525.	6.4	19
44	Template-Hopping Approach Leads to Potent, Selective, and Highly Soluble Bromo and Extraterminal Domain (BET) Second Bromodomain (BD2) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 3249-3281.	6.4	19
45	Fragments in bromodomain drug discovery. MedChemComm, 2015, 6, 1587-1604.	3.4	17
46	Aiming to Miss a Moving Target: Bromo and Extra Terminal Domain (BET) Selectivity in Constrained ATAD2 Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8321-8336.	6.4	17
47	Identification of Selective Inhibitors of <i>Plasmodium</i> N-Myristoyltransferase by High-Throughput Screening. Journal of Medicinal Chemistry, 2020, 63, 591-600.	6.4	17
48	Optimization of a Series of 2,3-Dihydrobenzofurans as Highly Potent, Second Bromodomain (BD2)-Selective, Bromo and Extra-Terminal Domain (BET) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10711-10741.	6.4	17
49	Fragment-based Scaffold Hopping: Identification of Potent, Selective, and Highly Soluble Bromo and Extra Terminal Domain (BET) Second Bromodomain (BD2) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10772-10805.	6.4	17
50	Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. Journal of Medicinal Chemistry, 2020, 63, 5212-5241.	6.4	14
51	Identification of a Series of <i>N</i> -Methylpyridine-2-carboxamides as Potent and Selective Inhibitors of the Second Bromodomain (BD2) of the Bromo and Extra Terminal Domain (BET) Proteins. Journal of Medicinal Chemistry, 2021, 64, 10742-10771.	6.4	14
52	Design, Synthesis, and Characterization of I-BET567, a Pan-Bromodomain and Extra Terminal (BET) Bromodomain Oral Candidate. Journal of Medicinal Chemistry, 2022, 65, 2262-2287.	6.4	14
53	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie, 2016, 128, 11554-11558.	2.0	10
54	The development of highly potent and selective small molecule correctors of Z $\hat{l}\pm 1$ -antitrypsin misfolding. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127973.	2.2	9

#	Article	IF	CITATIONS
55	Investigation of Janus Kinase (JAK) Inhibitors for Lung Delivery and the Importance of Aldehyde Oxidase Metabolism. Journal of Medicinal Chemistry, 2022, 65, 633-664.	6.4	6
56	Challenges and Opportunities for Bayesian Statistics in Proteomics. Journal of Proteome Research, 2022, 21, 849-864.	3.7	5
57	<i>In Vivo</i> Half-Life Extension of BMP1/TLL Metalloproteinase Inhibitors Using Small-Molecule Human Serum Albumin Binders. Bioconjugate Chemistry, 2021, 32, 279-289.	3.6	4
58	Optimization of Naphthyridones into Selective TATA-Binding Protein Associated Factor 1 (TAF1) Bromodomain Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1308-1317.	2.8	4
59	Discovery and Characterisation of Highly Cooperative FAKâ€Degrading PROTACs. Angewandte Chemie, 2021, 133, 23515-23522.	2.0	4
60	Design and Development of a Macrocyclic Series Targeting Phosphoinositide 3-Kinase \hat{l} . ACS Medicinal Chemistry Letters, 2020, 11, 1386-1391.	2.8	2
61	Epigenetic Drug Discovery. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 27-40.	0.5	0