Rongchun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3583194/publications.pdf

Version: 2024-02-01

69 papers 2,134 citations

28 h-index 253896 43 g-index

74 all docs

74 docs citations

times ranked

74

2419 citing authors

#	Article	IF	Citations
1	Bioâ€Inspired Highâ€Performance and Recyclable Crossâ€Linked Polymers. Advanced Materials, 2013, 25, 4912-4917.	11.1	224
2	Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid- \hat{l}^2 . Journal of Biological Chemistry, 2017, 292, 4638-4650.	1.6	145
3	Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy. Accounts of Chemical Research, 2017, 50, 1105-1113.	7.6	111
4	Heterogeneity, Segmental and Hydrogen Bond Dynamics, and Aging of Supramolecular Self-Healing Rubber. Macromolecules, 2013, 46, 1841-1850.	2.2	89
5	Using Zn ²⁺ lonomer To Catalyze Transesterification Reaction in Epoxy Vitrimer. Industrial & amp; Engineering Chemistry Research, 2019, 58, 5698-5706.	1.8	67
6	Using Dynamic Bonds to Enhance the Mechanical Performance: From Microscopic Molecular Interactions to Macroscopic Properties. Macromolecules, 2019, 52, 5014-5025.	2.2	64
7	Enhancing antifogging/frost-resisting performances of amphiphilic coatings via cationic, zwitterionic or anionic polyelectrolytes. Chemical Engineering Journal, 2019, 357, 667-677.	6.6	62
8	Viscoelasticity and Structures in Chemically and Physically Dual-Cross-Linked Hydrogels: Insights from Rheology and Proton Multiple-Quantum NMR Spectroscopy. Macromolecules, 2017, 50, 9340-9352.	2.2	59
9	Reversible Cross-Linking, Microdomain Structure, and Heterogeneous Dynamics in Thermally Reversible Cross-Linked Polyurethane as Revealed by Solid-State NMR. Journal of Physical Chemistry B, 2014, 118, 1126-1137.	1.2	58
10	Mesoatom alloys via self-sorting approach of giant molecules blends. Giant, 2020, 4, 100031.	2.5	57
11	Finite-pulse radio frequency driven recoupling with phase cycling for 2D 1H/1H correlation at ultrafast MAS frequencies. Journal of Magnetic Resonance, 2014, 243, 25-32.	1.2	53
12	High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: The molecular design, microstructures, and macroscopic properties. Polymer, 2018, 148, 127-137.	1.8	48
13	Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective. Journal of Physical Chemistry B, 2017, 121, 6108-6116.	1.2	47
14	Hybrid Liquid-Crystalline Electrolytes with High-Temperature-Stable Channels for Anhydrous Proton Conduction. Journal of the American Chemical Society, 2021, 143, 21433-21442.	6.6	45
15	A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions. Scientific Reports, 2015, 5, 11810.	1.6	44
16	Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments. Journal of Magnetic Resonance, 2015, 252, 55-66.	1.2	43
17	Investigating Albendazole Desmotropes by Solid-State NMR Spectroscopy. Molecular Pharmaceutics, 2015, 12, 731-741.	2.3	42
18	1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2015, 261, 1-5.	1.2	38

#	Article	IF	Citations
19	Dual Crossâ€linked Vinyl Vitrimer with Efficient Selfâ€Catalysis Achieving Tripleâ€Shapeâ€Memory Properties. Macromolecular Rapid Communications, 2019, 40, e1900313.	2.0	38
20	Unique Interphase and Cross-Linked Network Controlled by Different Miscible Blocks in Nanostructured Epoxy/Block Copolymer Blends Characterized by Solid-State NMR. Journal of Physical Chemistry C, 2014, 118, 13285-13299.	1.5	34
21	Critical Effect of Segmental Dynamics in Polybutadiene/Clay Nanocomposites Characterized by Solid State ¹ H NMR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 5606-5614.	1.5	34
22	Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. Journal of Magnetic Resonance, 2016, 266, 59-66.	1.2	33
23	A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. Journal of Magnetic Resonance, 2015, 250, 37-44.	1.2	32
24	Strain-induced structural and dynamic changes in segmented polyurethane elastomers. Polymer, 2019, 163, 154-161.	1.8	31
25	Enhancing NMR Sensitivity of Naturalâ€Abundance Lowâ€Î³ Nuclei by Ultrafast Magicâ€Angleâ€Spinning Solidâ€State NMR Spectroscopy. ChemPhysChem, 2016, 17, 2962-2966.	1.0	30
26	Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Selfâ€Assembly of Giant Lipids. Angewandte Chemie - International Edition, 2020, 59, 5226-5234.	7.2	30
27	Bio-inspired self-healing polyurethanes with multiple stimulus responsiveness. Polymer Chemistry, 2019, 10, 3362-3370.	1.9	29
28	Hierarchical Dynamics in a Transient Polymer Network Cross-Linked by Orthogonal Dynamic Bonds. Macromolecules, 2020, 53, 5937-5949.	2.2	29
29	Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy. Journal of Chemical Physics, 2015, 143, 144201.	1.2	28
30	Spherical Supramolecular Structures Constructed via Chemically Symmetric Perylene Bisimides: Beyond Columnar Assembly. Angewandte Chemie - International Edition, 2020, 59, 18563-18571.	7.2	28
31	Multiple-responsive shape memory polyacrylonitrile/graphene nanocomposites with rapid self-healing and recycling properties. RSC Advances, 2018, 8, 1225-1231.	1.7	25
32	Rapid self-healing and recycling of multiple-responsive mechanically enhanced epoxy resin/graphene nanocomposites. RSC Advances, 2017, 7, 46336-46343.	1.7	23
33	Investigation on the Mechanism of the Synthesis of Gold(I) Thiolate Complexes by NMR. Journal of Physical Chemistry C, 2014, 118, 10434-10440.	1.5	22
34	Probing the Nanostructure, Interfacial Interaction, and Dynamics of Chitosan-Based Nanoparticles by Multiscale Solid-State NMR. ACS Applied Materials & Solid-St	4.0	21
35	Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA. Journal of Magnetic Resonance, 2014, 244, 90-97.	1.2	21
36	Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. Journal of Chemical Physics, 2015, 143, 034201.	1.2	21

#	Article	IF	CITATIONS
37	Efficient symmetry-based \hat{I}^3 -encoded DQ recoupling sequences for suppression of t1-noise in solid-state NMR spectroscopy at fast MAS. Solid State Nuclear Magnetic Resonance, 2021, 114, 101734.	1.5	20
38	Molecular origin of the shape memory properties of heat-shrink crosslinked polymers as revealed by solid-state NMR. Polymer, 2016, 107, 61-70.	1.8	19
39	Supramolecular Self-Assembly of Perylene Bisimide-Based Rigid Giant Tetrahedra. ACS Nano, 2020, 14, 8266-8275.	7.3	19
40	Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions. Journal of Magnetic Resonance, 2014, 243, 85-92.	1.2	17
41	Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. Journal of Chemical Physics, 2015, 143, 164201.	1.2	16
42	Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions. Journal of Chemical Physics, 2015, 142, 204201.	1.2	16
43	Proton-detected 3D 15N/1H/1H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS. Solid State Nuclear Magnetic Resonance, 2016, 76-77, 1-6.	1.5	16
44	3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning. Journal of Physical Chemistry B, 2017, 121, 5944-5952.	1.2	16
45	Resolution enhancement and proton proximity probed by 3D TQ/DQ/SQ proton NMR spectroscopy under ultrafast magic-angle-spinning beyond 70†kHz. Journal of Magnetic Resonance, 2019, 304, 78-86.	1.2	16
46	<i>t</i> ₁ -Noise Suppression by \hat{I}^3 -Free Recoupling Sequences in Solid-State NMR for Structural Characterization of Fully Protonated Molecules at Fast MAS. Journal of Physical Chemistry C, 2020, 124, 26332-26343.	1.5	16
47	Hydrogen bond interaction and dynamics in PMMA/PVPh polymer blends asÂrevealed by advanced solid-state NMR. Polymer, 2013, 54, 472-479.	1.8	15
48	Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. Journal of Magnetic Resonance, 2019, 309, 106615.	1.2	15
49	The strong interaction between poly(vinyl chloride) and a new eco-friendly plasticizer: A combined experiment and calculation study. Polymer, 2014, 55, 2831-2840.	1.8	13
50	2H Solid-State NMR Analysis of the Dynamics and Organization of Water in Hydrated Chitosan. Polymers, 2016, 8, 149.	2.0	13
51	Effects of interphase on the dispersion of MWCNTs in ethylene-α-octene copolymers revealed by solid-state NMR spectroscopy. Polymer, 2017, 114, 44-53.	1.8	12
52	Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS. Journal of Chemical Physics, 2016, 144, 034202.	1.2	11
53	High-resolution proton-detected MAS experiments on self-assembled diphenylalanine nanotubes enabled by fast MAS and high magnetic field. Journal of Magnetic Resonance, 2020, 313, 106717.	1.2	11
54	Accessing Structure and Dynamics of Mobile Phase in Organic Solids by Real-Time T _{1C} Filter PISEMA NMR Spectroscopy. Journal of Physical Chemistry A, 2012, 116, 979-984.	1.1	9

#	Article	IF	CITATIONS
55	Spherical Supramolecular Structures Constructed via Chemically Symmetric Perylene Bisimides: Beyond Columnar Assembly. Angewandte Chemie, 2020, 132, 18722-18730.	1.6	9
56	Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends. European Physical Journal E, 2015, 38, 118.	0.7	7
57	Effects of residual surfactant on the glass transition behavior of polystyrene/gold nanocomposites. Polymer, 2015, 77, 14-20.	1.8	7
58	Rapid Structural Analysis of Minute Quantities of Organic Solids by Exhausting ¹ H Polarization in Solid-State NMR Spectroscopy Under Fast Magic Angle Spinning. Journal of Physical Chemistry Letters, 2021, 12, 12067-12074.	2.1	7
59	Efficient Identification of Different Types of Carbons in Organic Solids by 2D Solid-State NMR Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 11665-11670.	1.1	6
60	Selective Observation of Chemical Structures at Surface and Core Regions of Heat-treated Poly(Acrylonitrile) Films by Solid-State NMR Spectroscopy. Macromolecules, 2019, 52, 8384-8393.	2.2	6
61	Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Selfâ€Assembly of Giant Lipids. Angewandte Chemie, 2020, 132, 5264-5272.	1.6	6
62	Proton triple-quantum solid-state NMR spectroscopy at slow MAS $\hat{a}^{1}/410$ kHz. Journal of Magnetic Resonance Open, 2021, 8-9, 100020.	0.5	3
63	Hydrogenation induced deviation of temperature and concentration dependences of polymer-solvent interactions in poly(vinyl chloride) and a new eco-friendly plasticizer. European Physical Journal Plus, 2015, 130, 1.	1.2	2
64	High-Resolution Proton NMR Spectroscopy of Polymers and Biological Solids. , 2018, , 521-536.		2
65	Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR. Polymers, 2022, 14, 1518.	2.0	2
66	Investigation on the artificial exchange signals induced by the RIDER effect in CODEX experiments. Solid State Nuclear Magnetic Resonance, 2012, 47-48, 28-34.	1.5	1
67	Copolymerization Induced Emission of Poly[(methylenelactide)-co-(2-vinylpyridine)]. Journal of Materials Chemistry C, 0, , .	2.7	1
68	Nano-silica Induced Crystallization in Polyurethane Elastomers. Acta Polymerica Sinica, 2014, 014, 72-79.	0.0	0
69	High-Resolution Proton NMR Spectroscopy of Polymers and Biological Solids. , 2017, , 1-16.		O