Minoru Inaba

List of Publications by Citations

Source: https://exaly.com/author-pdf/3583087/minoru-inaba-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

227 10,870 49 100 g-index

247 11,621 4.2 5.73 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
227	Scientific aspects of polymer electrolyte fuel cell durability and degradation. <i>Chemical Reviews</i> , 2007 , 107, 3904-51	68.1	2627
226	Gas crossover and membrane degradation in polymer electrolyte fuel cells. <i>Electrochimica Acta</i> , 2006 , 51, 5746-5753	6.7	401
225	Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 3326-3329	3	298
224	Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A1578	3.9	288
223	Durability of perfluorinated ionomer membrane against hydrogen peroxide. <i>Journal of Power Sources</i> , 2006 , 158, 1222-1228	8.9	267
222	In Situ Raman Study on Electrochemical Li Intercalation into Graphite. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 20-26	3.9	253
221	Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions. <i>Langmuir</i> , 2001 , 17, 8281-8286	4	243
220	Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder. Journal of the Electrochemical Society, 1998 , 145, 172-178	3.9	227
219	Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. <i>Journal of Raman Spectroscopy</i> , 1997 , 28, 613-617	2.3	211
218	Crystal Structure and Metallhsulator Transition of La1\(\mathbb{R}\)SrxCoO3. <i>Journal of Solid State Chemistry</i> , 1996 , 121, 423-429	3.3	199
217	Effect of Agglomeration of Pt/C Catalyst on Hydrogen Peroxide Formation. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, A474		190
216	Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A989	3.9	173
215	Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution. <i>Langmuir</i> , 1996 , 12, 1535-1540	4	146
214	Electrochemical Lithium Intercalation within Carbonaceous Materials: Intercalation Processes, Surface Film Formation, and Lithium Diffusion. <i>Bulletin of the Chemical Society of Japan</i> , 1998 , 71, 521-5	3 ⁵ 4 ¹	145
213	A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite. <i>Journal of Power Sources</i> , 1997 , 68, 227-231	8.9	142
212	Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties. <i>Journal of Power Sources</i> , 2001 , 94, 175-182	8.9	140
211	Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, A13		138

210	Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu[sub 2]O Films. <i>Journal of the Electrochemical Society</i> , 2005 , 152, C179	3.9	133	
209	Metallhsulator Transition and Crystal Structure of La1\(\mathbb{B}\)SrxCoO3as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure. <i>Journal of Solid State Chemistry</i> , 1999 , 142, 374-381	3.3	125	
208	Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. <i>Electrochimica Acta</i> , 2002 , 47, 1975-1982	6.7	119	
207	Stage Transformation of Lithium-Graphite Intercalation Compounds Caused by Electrochemical Lithium Intercalation. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 2443-2448	3.9	119	
206	Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction. <i>Journal of Power Sources</i> , 2008 , 175, 540-546	8.9	108	
205	STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution. <i>Electrochimica Acta</i> , 1999 , 45, 99-105	6.7	100	
204	Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate. <i>Journal of Power Sources</i> , 1997 , 68, 221-226	8.9	99	
203	Effects of mixed conduction on the open-circuit voltage of intermediate-temperature SOFCs based on Sm-doped ceria electrolytes. <i>Solid State Ionics</i> , 2005 , 176, 663-668	3.3	99	
202	Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs. <i>Solid State Ionics</i> , 2005 , 176, 647-654	3.3	97	
201	Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. <i>Electrochimica Acta</i> , 2006 , 52, 1632-1638	6.7	96	
200	Direct Electrodeposition of 1.46 eV Bandgap Silver(I) Oxide Semiconductor Films by Electrogenerated Acid. <i>Chemistry of Materials</i> , 2008 , 20, 1254-1256	9.6	94	
199	Dilution of Highly Concentrated LiBF4/Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi0.5Mn1.5O4Positive Electrodes. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A6-	432-A6	5416	
198	Formation mechanism of alkyl dicarbonates in Li-ion cells. <i>Journal of Power Sources</i> , 2005 , 150, 208-215	8.9	81	
197	In situ Roman Study of Electrochemical Lithium Insertion into Mesocarbon Microbeads Heat-Treated at Various Temperatures. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2572-2578	3.9	81	
196	Irreversible capacity of electrodeposited Sn thin film anode. Journal of Power Sources, 2005, 146, 473-4	78 .9	76	
195	Suppression of an Alkyl Dicarbonate Formation in Li-Ion Cells. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A2046	3.9	76	
194	Influence of Nafion film on the kinetics of anodic hydrogen oxidation. <i>Journal of Electroanalytical Chemistry</i> , 1998 , 447, 201-209	4.1	75	
193	Imaging of highly oriented pyrolytic graphite corrosion accelerated by Pt particles. <i>Electrochemistry Communications</i> , 2005 , 7, 1153-1156	5.1	75	

192	Correlation Between Cointercalation of Solvents and Electrochemical Intercalation of Lithium into Graphite in Propylene Carbonate Solution. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A257	3.9	69
191	Preliminary Study on Direct Alcohol Fuel Cells Employing Anion Exchange Membrane. <i>Electrochemistry</i> , 2002 , 70, 980-983	1.2	68
190	AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries. <i>Journal of Power Sources</i> , 2003 , 119-121, 555-560	8.9	68
189	TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries. <i>Journal of Power Sources</i> , 2009 , 189, 580-584	8.9	61
188	Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures. Journal of Power Sources, 2008 , 180, 539-545	8.9	59
187	Raman Spectra of LiCo1 NiyO2. <i>Chemistry Letters</i> , 1995 , 24, 889-890	1.7	58
186	Density functional theory calculation on the effect of local structure of doped ceria on ionic conductivity. <i>Solid State Ionics</i> , 2003 , 160, 109-116	3.3	57
185	Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion -coated gold electrodes. <i>Journal of Electroanalytical Chemistry</i> , 1998 , 458, 175-182	4.1	56
184	Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 209, 219-224	6.7	56
183	Photochemical Construction of Photovoltaic Device Composed of p-Copper(I) Oxide and n-Zinc Oxide. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C668	3.9	55
182	Transmission electron microscopy (TEM) analysis of two-phase reaction in electrochemical lithium insertion within \(\text{H}MoO3. \) Solid State Ionics, 2000 , 135, 95-100	3.3	53
181	Electrochemical STM observation of LiMn2O4 thin films prepared by pulsed laser deposition. <i>Journal of Power Sources</i> , 1999 , 81-82, 554-557	8.9	53
180	In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes. <i>Scientific Reports</i> , 2016 , 6, 36153	4.9	52
179	Stability of Pt-Catalyzed Highly Oriented Pyrolytic Graphite Against Hydrogen Peroxide in Acid Solution. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A58	3.9	51
178	Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition. <i>Journal of Power Sources</i> , 2005 , 146, 559-564	8.9	49
177	Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. <i>Electrochimica Acta</i> , 2017 , 224, 186-193	6.7	48
176	Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template. <i>ACS Applied Materials & Distributed Materials & Di</i>	9.5	47
175	Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells. <i>Journal of Power Sources</i> , 2008 , 178, 699-705	8.9	45

174	Application of the SPE method to organic electrochemistry VII. The reduction of nitrobenzene on a modified Pt-nafion. <i>Electrochimica Acta</i> , 1988 , 33, 365-369	6.7	45	
173	Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures. <i>Langmuir</i> , 2004 , 20, 1348-55	4	43	
172	Preparation of LiFePO[sub 4] Thin Films by Pulsed Laser Deposition and Their Electrochemical Properties. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, A340		42	
171	Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode. <i>Journal of Power Sources</i> , 2001 , 97-98, 156-158	8.9	42	
170	In Situ Atomic Force Microscopy Study on Lithium Deposition on Nickel Substrates at Elevated Temperatures. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A385	3.9	41	
169	LiBF4-Based Concentrated Electrolyte Solutions for Suppression of Electrolyte Decomposition and Rapid Lithium-Ion Transfer at LiNi0.5Mn1.5O4/Electrolyte Interface. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2211-A2215	3.9	39	
168	New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiFliCl, LiFliBr, and LiClliBr. <i>Journal of Power Sources</i> , 2011 , 196, 4012-40	of89	37	
167	Preparation of alkali metal graphite intercalation compounds in organic solvents. <i>Journal of Physics and Chemistry of Solids</i> , 1996 , 57, 799-803	3.9	37	
166	Effects of Carbon Dioxide on the Performance of Anion-Exchange Membrane Fuel Cells. <i>Electrochemistry</i> , 2011 , 79, 322-325	1.2	36	
165	Controllable Growth Orientation of Ag2O and Cu2O Films by Electrocrystallization from Aqueous Solutions. <i>Crystal Growth and Design</i> , 2013 , 13, 52-58	3.5	35	
164	Improved Cycle Performance of LiNi0.8Co0.1Mn0.1O2 Positive Electrode Material in Highly Concentrated LiBF4/DMC. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A82-A88	3.9	33	
163	Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy. <i>Journal of Power Sources</i> , 2003 , 119-121, 597-603	8.9	32	
162	Influence of Li diffusion distance on the negative electrode properties of Si thin flakes for Li secondary batteries. <i>Solid State Ionics</i> , 2012 , 225, 506-509	3.3	31	
161	Membrane Degradation in Polymer Electrolyte Fuel Cells under Low Humidification Conditions. <i>Electrochemistry</i> , 2007 , 75, 207-212	1.2	31	
160	Si thin platelets as high-capacity negative electrode for Li-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 6637-6643	8.9	30	
159	Effects of Temperature and Relative Humidity on Oxygen Permeation in Nafion and Sulfonated Poly(Arylene Ether Sulfone). <i>ECS Transactions</i> , 2009 , 16, 881-889	1	30	
158	Durability of Electrocatalysts in Polymer Electrolyte Fuel Cells. ECS Transactions, 2009, 25, 573-581	1	30	
157	Growth rate of yttria-stabilized zirconia thin films formed by electrochemical vapour-deposition using NiO as an oxygen source. <i>Solid State Ionics</i> , 1997 , 104, 303-310	3.3	28	

156	Electrochemical Corrosion of Carbon Materials in an Aqueous Acid Solution. <i>Electrochemistry</i> , 2007 , 75, 258-260	1.2	28
155	Anionic Species (FH)xF- in Room-Temperature Molten Fluorides (CH3)4NFEmHF. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 1127-1132	2.8	28
154	Proton conductivity of (NH4)2TiP4O13-based material for intermediate temperature fuel cells. <i>Electrochemistry Communications</i> , 2004 , 6, 180-182	5.1	27
153	Electrochemical Properties of Carbonaceous Thin Films Prepared by Plasma Chemical Vapor Deposition. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A1260	3.9	27
152	Effects of Li pre-doping on charge/discharge properties of Si thin flakes as a negative electrode for Li-ion batteries. <i>Solid State Ionics</i> , 2014 , 262, 39-42	3.3	26
151	Effect of fluorinated alcohol on the kinetics of cathodic oxygen reduction at gold electrodes. <i>Electrochimica Acta</i> , 1999 , 45, 415-422	6.7	26
150	Influence of Carbon Dioxide on the Performance of Anion-Exchange Membrane Fuel Cells. <i>ECS Transactions</i> , 2009 , 25, 105-110	1	25
149	Stability of platinum particles on a carbon substrate investigated by atomic force microscopy and scanning electron microscopy. <i>Journal of Power Sources</i> , 2007 , 171, 524-529	8.9	25
148	Effects of the molecular structure of fluorinated additives on the kinetics of cathodic oxygen reduction. <i>Journal of Electroanalytical Chemistry</i> , 2001 , 504, 208-216	4.1	25
147	Hydrogen oxidation on partially immersed Nafion□ -coated electrodes. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 417, 105-111	4.1	24
146	Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using in situ AFM. <i>Nanoscale</i> , 2018 , 10, 17257-17264	7.7	24
145	Simultaneous measurement of the effective ionic conductivity and effective electronic conductivity in a porous electrode film impregnated with electrolyte. <i>Journal of Electroanalytical Chemistry</i> , 2010 , 648, 92-97	4.1	22
144	Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique. <i>Solid State Ionics</i> , 2004 , 175, 483-485	3.3	22
143	Si/Li2S Battery with Solvate Ionic Liquid Electrolyte. <i>Electrochemistry</i> , 2016 , 84, 887-890	1.2	21
142	Improvement of tap density of TiO2(B) powder as high potential negative electrode for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 244, 50-55	8.9	21
141	Effect of Core Size on Activity and Durability of Pt Core-Shell Catalysts for PEFCs. <i>ECS Transactions</i> , 2010 , 33, 231-238	1	21
140	Zinc Oxide Nano-Cauliflower Array with Room Temperature Ultraviolet Light Emission. <i>Crystal Growth and Design</i> , 2008 , 8, 1418-1421	3.5	21
139	Study of the Decomposition of Propylene Carbonate on Lithium Metal Surface by Pyrolysis © as ChromatographyMass Spectroscopy. <i>Langmuir</i> , 2003 , 19, 814-821	4	21

(2015-1999)

138	Nucleation and phase-boundary movement upon stage transformation in lithiumgraphite intercalation compounds. <i>Electrochimica Acta</i> , 1999 , 45, 865-871	6.7	21	
137	STM Study of Well-Defined Graphite/Electrolyte Interface Polarized in Propylene Carbonate Solution Containing 12-Crown-4. <i>Electrochemistry</i> , 1999 , 67, 1153-1155	1.2	21	
136	Surface film formation on nickel electrodes in a propylene carbonate solution at elevated temperatures. <i>Journal of Power Sources</i> , 2002 , 108, 163-173	8.9	20	
135	Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient. <i>Solid State Ionics</i> , 2002 , 152-153, 493-498	3.3	19	
134	NiHe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells. <i>Solid State Ionics</i> , 2014 , 256, 1-4	3.3	18	
133	Improvement of the Reversible Capacity of TiO2(B) High Potential Negative Electrode. <i>Journal of the Electrochemical Society</i> , 2011 , 159, A49-A54	3.9	18	
132	New molten salt systems for high-temperature molten salt batteries: LiFLiClLiBr-based quaternary systems. <i>Journal of Power Sources</i> , 2010 , 195, 7691-7700	8.9	18	
131	Effect of an Alkyl Dicarbonate on Li-Ion Cell Performance. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1963	3.9	18	
130	Preparation of Yttria-Stabilized Zirconia Microtube by Electrochemical Vapor Deposition. <i>Journal of the American Ceramic Society</i> , 1995 , 78, 3157-3159	3.8	18	
129	Electrochemical and Chemical Treatment Methods for Enhancement of Oxygen Reduction Reaction Activity of Pt Shell-Pd Core Structured Catalyst. <i>Electrochimica Acta</i> , 2017 , 244, 146-153	6.7	17	
128	Low-Viscosity Butyrolactone-Based Concentrated Electrolyte Solutions for LiNi0.5Mn1.5O4 Positive Electrodes in Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2017 , 4, 2398-2403	4.3	17	
127	In situ atomic force microscopy observation of lithium deposition at an elevated temperature. <i>Journal of Power Sources</i> , 2001 , 97-98, 265-268	8.9	17	
126	Electrochemical STM Study on Surface Morphology Change of HOPG Basal Plane in an Organic Electrolyte Solution. <i>Chemistry Letters</i> , 1995 , 24, 661-662	1.7	17	
125	Effect of Lithium Silicate Addition on the Microstructure and Crack Formation of LiNiCoMnO Cathode Particles. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 39910-39920	9.5	16	
124	Morphology changes and long-term cycling durability of Si flake powder negative electrode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 267, 94-101	6.7	16	
123	Calorimetric Study on the Hysteresis in the Charge-Discharge Profiles of Mesocarbon Microbeads Heat-Treated at Low Temperatures. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 4008	3.9	16	
122	Suppression of MnIbn-Dissolution of LiNi0.5Mn1.5O4 Electrodes in a Highly Concentrated Electrolyte Solution at Elevated Temperatures. <i>ChemistrySelect</i> , 2017 , 2, 8824-8827	1.8	15	
121	Li Pre-doping of Amorphous Silicon Electrode in Li-Naphthalene Complex Solutions. <i>Electrochemistry</i> , 2015 , 83, 843-845	1.2	15	

120	Influence of lithium silicate coating on retarding crack formation in LiNi0.5Co0.2Mn0.3O2 cathode particles. <i>Electrochimica Acta</i> , 2018 , 291, 304-310	6.7	15
119	Fluoroalkyl ether-diluted dimethyl carbonate-based electrolyte solutions for high-voltage operation of LiNi0.5Co0.2Mn0.3O2 electrodes in lithium ion batteries. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1197-1205	5.8	14
118	Cycle Performances of Si-flake-powder Anodes in Lithium Salt-tetraglyme Complex Electrolytes. <i>Electrochemistry</i> , 2015 , 83, 837-839	1.2	14
117	Influence of defects on the phase-boundary movement in a stage transformation of lithium-graphite intercalation compounds. <i>Carbon</i> , 1999 , 37, 1591-1598	10.4	14
116	Solvation-controlled ester-based concentrated electrolyte solutions for high-voltage lithium-ion batteries. <i>Current Opinion in Electrochemistry</i> , 2018 , 9, 49-55	7.2	13
115	Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells. <i>Solid State Ionics</i> , 2016 , 285, 222-226	3.3	13
114	Adsorbed Water on Nano-Silicon Powder and Its Effects on Charge and Discharge Characteristics as Anode in Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A6084-A6087	3.9	13
113	Development of Highly Active and Durable Platinum Core-shell Catalysts for Polymer Electrolyte Fuel Cells. <i>Journal of the Japan Petroleum Institute</i> , 2015 , 58, 55-63	1	13
112	New iodide-based molten salt systems for high temperature molten salt batteries. <i>Journal of Power Sources</i> , 2009 , 194, 1180-1183	8.9	13
111	Application of the Solid Polymer Electrolyte Method to Organic Electrochemistry: XIV . Effects of Solvents on the Electroreduction of Nitrobenzene on Cu, Pt-Nafion. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 19-22	3.9	13
110	Silicon Nano-flake Powder as an Anode for The Next Generation Lithium-ion Batteries: Current Status and Challenges. <i>Electrochemistry</i> , 2017 , 85, 623-629	1.2	12
109	Surface Film Formation on Graphite Negative Electrode at Elevated Temperatures. <i>Electrochemistry</i> , 2003 , 71, 1132-1135	1.2	12
108	Electrolysis of mixed melt of (CH3)4NFImHF+x wt.% CsFI2.0HF with nickel anode. <i>Electrochimica Acta</i> , 2004 , 49, 2131-2137	6.7	12
107	Enhancement of Oxygen Reduction Reaction Activity of Pd Core-Pt Shell Structured Catalyst on a Potential Cycling Accelerated Durability Test. <i>Electrocatalysis</i> , 2018 , 9, 125-138	2.7	12
106	Electronic structures of partially fluorinated lithium manganese spinel oxides and their electrochemical properties. <i>Journal of Power Sources</i> , 2009 , 189, 599-601	8.9	11
105	Shape-Controlled Platinum Nanoparticles of Different Sizes and Their Electrochemical Properties. <i>Electrocatalysis</i> , 2010 , 1, 169-177	2.7	11
104	Electrochemical STM Observation of Li[sub 1+x]Mn[sub 2🛭]O[sub 4] Thin Films Prepared by Pulsed Laser Deposition. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A20	3.9	11
103	Stability of Pt-Ru/C Catalysts: Effects of Ru Content. <i>ECS Transactions</i> , 2007 , 11, 325-334	1	11

(1996-2020)

102	Creation of a Highly Active Pt/Pd/C CoreBhell-Structured Catalyst by Synergistic Combination of Intrinsically High Activity and Surface Decoration with Melamine or Tetra-(tert-butyl)-tetraazaporphyrin. <i>ACS Catalysis</i> , 2020 , 10, 14567-14580	13.1	11	
101	Oxygen-Content Dependence of Cycle Performance and Morphology Changes in Amorphous-SiOx Thin-Film Negative Electrodes for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A258-A263	3.9	10	
100	Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells. <i>Solid State Ionics</i> , 2018 , 319, 180-185	3.3	10	
99	Improvement of Cycleability and Rate-Capability of LiNi0.5Co0.2Mn0.3O2 Cathode Materials Coated with Lithium Boron Oxide by an Antisolvent Precipitation Method. <i>ChemistrySelect</i> , 2019 , 4, 86	76 ^{1.8} 68	1 ¹⁰	
98	Carbon Coating of Si Thin Flakes and Negative Electrode Properties in Lithium-Ion Batteries. <i>Electrochemistry</i> , 2012 , 80, 720-724	1.2	10	
97	Application of the Solid Polymer Electrolyte Method to Organic Electrochemistry: XVII . Indirect Electrochemical Debromination Using Viologens as Microscopic Phase-Transfer Mediators. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 2579-2586	3.9	10	
96	Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems. <i>Materials Advances</i> , 2020 , 1, 625-631	3.3	9	
95	Shape-controlled Silicon Particles for High-capacity Negative Electrode of Li-ion Batteries. <i>Electrochemistry</i> , 2010 , 78, 438-441	1.2	9	
94	Measurement and Thermodynamic Analysis of MMF[sub n] (M=Cu and Fe) Electrode Potentials in a Few Fluoride Melts Containing HF. <i>Journal of the Electrochemical Society</i> , 2006 , 153, D149	3.9	9	
93	Porous Metal Tubular Support for Solid Oxide Fuel Cell Design. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, A427		9	
92	Raman scattering study of acceptor-acceptor-type graphite bi-intercalation compounds. <i>Physical Review B</i> , 2000 , 61, 11344-11347	3.3	9	
91	Application of the Solid Polymer Electrolyte Method to Organic Electrochemistry: XV . Influence of the Multiphase Structure of Nafion on Electroreduction of Substituted Aromatic Nitro Compounds on Cu,Pt-Nafion. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 706-711	3.9	9	
90	Carbon Surface Oxidation by Short-Term Ozone Treatment for Modeling Long-Term Degradation of Fuel Cell Cathodes. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A181	3.9	8	
89	Lithium Ion Transfer At Carbon Thin Film Electrode/Electrolyte Interface. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 388, 141-146	0.5	8	
88	Carbon Anodes 2002 , 79-101		8	
87	Surface film formation on graphite negative electrodes in rechargeable lithium batteries. <i>Macromolecular Symposia</i> , 2000 , 156, 195-202	0.8	8	
86	Electrochemical Intercalation of Li into Carbon Thin Films Prepared by Plasma CVD. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 340, 517-522		8	
85	Preparation of hollow YSZ fibre by electrochemical vapour deposition. <i>Solid State Ionics</i> , 1996 , 86-88, 1251-1254	3.3	8	

84	Electrochemical Properties and Single Cell Performance of Pd Core-Pt Shell Structured Catalyst Synthesized by a Simple Direct Displacement Reaction. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 044513	3.9	7
83	Electroreduction of 2-cyclohexen-1-one on metalBolid polymer electrolyte composite electrodes. <i>Electrochimica Acta</i> , 1998 , 44, 653-657	6.7	7
82	Hydrogen Peroxide Formation as a Degradation Factor of Polymer Electrolyte Fuel Cells. <i>ECS Transactions</i> , 2006 , 1, 315-322	1	7
81	Debye-Waller factors of FeCl3- and ICl-graphite intercalation compounds. <i>Carbon</i> , 1995 , 33, 1789-1793	10.4	7
80	Oxygen permeation through perfluorinated carboxylate ion exchange membranes. <i>Electrochimica Acta</i> , 1993 , 38, 1727-1731	6.7	7
79	Reviving Galvanic Cells To Synthesize CoreBhell Nanoparticles with a Quasi-Monolayer Pt Shell for Electrocatalytic Oxygen Reduction. <i>ACS Catalysis</i> , 2020 , 10, 430-434	13.1	7
78	Negative Electrode Properties of Sn and Si Leaf Powder for Li-ion Batteries. <i>ECS Transactions</i> , 2009 , 25, 101-108	1	6
77	Performances of metal fluoride added carbon anodes with pre-electrolysis for electrolytic synthesis of NF3. <i>Electrochimica Acta</i> , 2011 , 56, 4425-4432	6.7	6
76	Irreversible Capacity and Lithium-ion Insertion/Extraction Kinetics of a High Potential Negative Electrode TiO2(B). <i>Electrochemistry</i> , 2010 , 78, 431-434	1.2	6
75	Preparation of ceria thin films and microtubes by vapor-phase deposition using NiO as oxygen source. <i>Thin Solid Films</i> , 1998 , 323, 18-22	2.2	6
74	Vapor-Phase Deposition for Dense CeO[sub 2] Film Growth on Porous Substrates. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A975	3.9	6
73	Surface Modification Of Carbonaceous Thin Films By Nf 3 Plasma And Their Effects On Electrochemical Properties. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 388, 117-122	0.5	6
72	Electrical Property, Crystal Structure and Oxygen Nonstoichiometry of La1-xSrxCo0.2Fe0.8O3-I <i>Electrochemistry</i> , 2000 , 68, 515-518	1.2	6
71	Preparation of functionally gradient fluorocarbon polymer films by plasma polymerization of NF3 and propylene. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 193-198	2.5	6
70	Microelectrode Simulation of Anode in Polymer Electrolyte Fuel Cells. <i>Electrochemistry</i> , 1996 , 64, 711-7	'17	6
69	Preparation and Electrochemical Properties of Carbonaceous Thin Films Prepared by C2H4/NF3 Glow Discharge Plasma. <i>Tanso</i> , 1999 , 1999, 252-256	0.1	6
68	Quantitative Analysis of Solid Electrolyte Interphase and Its Correlation with The Electrochemical Performance of Lithium Ion Batteries Using Concentrated LiPF6/propylene Carbonate. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 020530	3.9	6
67	Analysis of cationic structure in some room-temperature molten fluorides and dependence of their ionic conductivity and viscosity on hydrofluoric acid concentration. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 9593-603	3.4	5

66	Effect of CsF-concentration on electrolytic conductivity, viscosity and anodic reaction of nickel electrode in (CH3)3N-CsFHF system at room temperature. <i>Electrochimica Acta</i> , 2011 , 56, 4335-4343	6.7	5
65	Ionic Conductivity and Viscosity of Low Temperature Molten Fluorides Containing HF. <i>Electrochemistry</i> , 2009 , 77, 713-720	1.2	5
64	Dilution Effects of Highly Concentrated Dimethyl Carbonate-Based Electrolytes with a Hydrofluoroether on Charge/Discharge Properties of LiNi0.8Co0.1Mn0.1O2 Positive Electrode. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A4005-A4013	3.9	5
63	Durability Improvement of Pd Core-Pt Shell Structured Catalyst by Porous SiO2Coating. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F737-F747	3.9	5
62	Pre-Film Formation and Cycle Performance of Silicon-Flake-Powder Negative Electrode in a Solvate Ionic Liquid for Silicon-Sulfur Rechargeable Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A1874-A1879	3.9	4
61	Extension of Anodic Potential Window of Ester-Based Electrolyte Solutions for High-Voltage Lithium Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7728-7732	6.1	4
60	2.?????????????????. Electrochemistry, 2013 , 81, 641-645	1.2	4
59	Improvement of Electrochemical Properties of a High Potential Negative Electrode TiO2(B). <i>ECS Transactions</i> , 2010 , 33, 57-66	1	4
58	Oxygen Reduction Reaction Activity of Shape Controlled Pt Catalysts. ECS Transactions, 2011, 41, 2283-	-2288	4
57	Improvement of Cycleability for Li-Si Alloy Anodes Using Si Thin Flakes for Li-Ion Batteries. <i>ECS Transactions</i> , 2012 , 41, 27-35	1	4
56	Li-Graphite Intercalation Compounds Synthesized in Various Ether-Type Organic Solvents. <i>Tanso</i> , 1998 , 1998, 290-295	0.1	4
55	Chemical Degradation of Perfluorinated Sulfonic Acid Membranes 2009 , 57-69		4
54	Communication Enhancement of Structural Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Particles against High-Voltage Cycling by Lithium Silicate Addition. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A941-A943	3.9	3
53	Suppression of Manganese-ion Dissolution by SiO2 Aerosol Addition from Spray Pyrolyzed Li2MnO3-LiMn1/3Ni1/3Co1/3O2. <i>Electrochemistry</i> , 2016 , 84, 842-847	1.2	3
52	ZnO Nano-Cauliflower Array Dye-Sensitized Solar Cells. <i>ECS Transactions</i> , 2009 , 16, 3-10	1	3
51	Effect of Electrolyte Composition and Anode Material on Current Efficiency for NF3 Formation in Electrolytic Synthesis using Diamond Anode. <i>ECS Transactions</i> , 2009 , 16, 469-477	1	3
50	Development of Oxygen Reduction Electrocatalysts Based on Manganese Oxides for AEMFCs. <i>ECS Transactions</i> , 2011 , 41, 2185-2192	1	3
49	Diagnostics of Cathode Flooding in a Segmented PEMFC with Local Reference Electrodes. <i>ECS Transactions</i> , 2006 , 3, 1041-1047	1	3

48	Stability and Thermodynamic Analysis of Pt and NiOx Fy INi Reference Electrodes in a Dehydrated Melt of NH4F 2HF. <i>Journal of the Electrochemical Society</i> , 2007 , 154, E172	3.9	3
47	SCANNING PROBE MICROSCOPY ANALYSIS OF THE SEI FORMATION ON GRAPHITE ANODES 2004 , 19	8-226	3
46	X-ray diffraction and Raman scattering studies of FeCl3BbCl5-graphite bi-intercalation compounds. <i>Journal of Materials Research</i> , 1996 , 11, 3039-3044	2.5	3
45	Electroreduction of a Chlorofluoroethane on a Solid Polymer Electrolyte Composite Electrode. <i>Chemistry Letters</i> , 1995 , 24, 471-472	1.7	3
44	Electroreduction of Acetophenone on Pt-Nafion Composite Electrodes. <i>Electrochemistry</i> , 1994 , 62, 118	83-1187	7 3
43	Non-Flammable and Highly Concentrated Carbonate Ester-Free Electrolyte Solutions for 5 V-Class Positive Electrodes in Lithium-Ion Batteries. <i>ChemSusChem</i> , 2021 , 14, 2445-2451	8.3	3
42	Physicochemical Features of Fluorinated Ethyl Acetate-Based Highly Concentrated Electrolyte Solutions and Their Effects on Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Positive Electrodes. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12578-12584	3.8	3
41	Hard X-ray Photoelectron Spectroscopy Analysis of Surface Chemistry of Spray Pyrolyzed LiNi0.5Co0.2Mn0.3O2 Positive Electrode Coated with Lithium Boron Oxide. <i>Electrochemistry</i> , 2019 , 87, 357-364	1.2	2
40	High Rate Charge and Discharge Characteristics of Graphite/SiOx Composite Electrodes. <i>Electrochemistry</i> , 2017 , 85, 403-408	1.2	2
39	Effect of Surface Fluorination on the Charge/Discharge Properties of High Potential Negative Electrode TiO2(B) for LIBs. <i>Key Engineering Materials</i> , 2013 , 582, 127-130	0.4	2
38	Determination of Surface Compositions of Pt-Ru Alloy Thin Films Using Cu Stripping Voltammetry. <i>Electrochemistry</i> , 2011 , 79, 357-360	1.2	2
37	Electrolysis of (CH3)4NFBHF Melt with Boron-doped Diamond Anode. <i>ECS Transactions</i> , 2009 , 16, 1-6	1	2
36	Measurement and Thermodynamic Analysis of NiF2/Ni Electrode Potential in a Dehydrated Melt of NH4F☑HF. <i>ECS Transactions</i> , 2006 , 3, 529-542	1	2
35	Preparation of Cubic Platinum Nanoparticles of Different Sizes and Their Electrochemical Propeties. <i>ECS Transactions</i> , 2007 , 11, 181-189	1	2
34	Preparation of LiNiO[sub 2]-Coated Ni Sheet Anodes and Their Application to Electrolytic Production of (CF[sub 3])[sub 3]N in (CH[sub 3])[sub 4]NF?4.0HF Melt. <i>Journal of the Electrochemical Society</i> , 2005 , 152, D220	3.9	2
33	Raman spectroscopic analysis of electrochemical behavior of propylviologen in Nafion. <i>Journal of Electroanalytical Chemistry</i> , 1995 , 383, 91-98	4.1	2
32	Reduction of Nitrobenzene on Solid Polymer Electrolyte Composite Electrodes Using a Hydrocarbon Sulfonate Ion-Exchange Membrane. <i>Chemistry Letters</i> , 1993 , 22, 1779-1782	1.7	2
31	Electrotransportation of Aniline Through a Perfluorosulfonate Ion-Exchange Membrane. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 1827-1831	3.9	2

30	Structure of Perfluorinated Ionomer Membranes Incorporating Organic Cations. <i>Chemistry Letters</i> , 1994 , 23, 1669-1672	1.7	2
29	Large-Scale Synthesis of Pt Monolayer on Pd Core Shell Catalyst for Oxygen Reduction Reaction. <i>ECS Meeting Abstracts</i> , 2011 ,	О	2
28	Durability of Au Core/Pt Shell Structured Catalyst. ECS Meeting Abstracts, 2012,	O	2
27	Improvement of Durability in Au Core/Pt Shell Structured Catalyst With PtRu Shell Formation. <i>ECS Meeting Abstracts</i> , 2013 ,	O	2
26	How is the concentration determined for rapid lithium ion transfer in highly concentrated electrolyte solutions?. <i>Electrochemical Science Advances</i> ,e2100058		2
25	Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation 1997 , 28, 613		2
24	Oxygen Reduction Catalytic Activity of Hollandite-Type Manganese Oxides. <i>Key Engineering Materials</i> , 2013 , 566, 253-257	0.4	1
23	Smoothing single-crystalline SiC surfaces by reactive ion etching using pure NF3 and NF3/Ar mixture gas plasmas. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2014 , 32, 051303	2.9	1
22	Improvement of Tap Density of TiO2(B) Powder as High Potential Negative Electrode. <i>ECS Transactions</i> , 2013 , 50, 261-269	1	1
21	IN SITU SPM ANALYSIS OF INTERFACIAL PHENOMENA IN LITHIUM-ION BATTERIES. World Scientific Series in Nanoscience and Nanotechnology, 2013 , 355-369	0.1	1
20	Analysis of the Ionic Conduction Behavior in Some Room Temperature Molten Fluorides. <i>ECS Transactions</i> , 2012 , 41, 7-12	1	1
19	Preparation of Lanthanum Nickel Oxide-Coated Ni Sheet Anodes and Their Application to Electrolytic Production of (CF3)3N in (CH3)4NF4.0HF Melt. <i>Journal of Rare Earths</i> , 2006 , 24, 1-8	3.7	1
18	Anodic behavior of nickel-based alloys in the electrolytic production of NF3. <i>Journal of Fluorine Chemistry</i> , 2005 , 126, 1101-1110	2.1	1
17	Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu2O Films <i>ChemInform</i> , 2005 , 36, no		1
16	Synthesis and Characterization of Acceptor Type Graphite Bi-Intercalation Compounds. <i>Tanso</i> , 2000 , 2000, 414-419	0.1	1
15	Structure-Controlled Pt Catalyst for Polymer Electrolyte Fuel Cells. <i>Hyomen Kagaku</i> , 2011 , 32, 698-703		1
14	Operando X-ray Absorption Spectroscopic Study on the Effect of Ionic Liquid Coverage upon the Oxygen Reduction Reaction Activity of Pd-core Pt-shell Catalysts. <i>Electrochemistry</i> , 2021 , 89, 31-35	1.2	1
13	Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation 1997 , 28, 613		1

12	Perfluoroinated Ionomer as an Artificial SEI for Silicon Nano-Flake Anode in LiTFSI/Tetraglyme Solvate Ionic Liquid. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 020519	3.9	О
11	Improved stability of highly concentrated LiBF4/fluorinated ethyl acetate-based electrolyte solutions with a co-solvent for LiNi0.8Co0.1Mn0.1O2 positive electrodes in lithium ion batteries. <i>Journal of Applied Electrochemistry</i> , 2021 , 51, 1535	2.6	O
10	Dilution Effects of Highly Concentrated LiBF4/DMC with Fluorinated Esters on Charge/Dishcharge Properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 Positive Electrode. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 040508	3.9	
9	Preparation and Charge/Discharge Characteristics of Carbon-modified Ramsdellite TiO2 as a High Potential Anode. <i>Electrochemistry</i> , 2015 , 83, 867-869	1.2	
8	Analysis of the Ionic Conduction Behavior in a Few of Room Temperature Molten Fluorides. <i>Electrochimica Acta</i> , 2015 , 174, 721-727	6.7	
7	In situ ??(2)SPM??????. Electrochemistry, 2011 , 79, 488-492	1.2	
6	Effect of Addition of Alkali Metal Fluoride to a Molten NH4F-HF System on Current Efficiency for NF3 Formation and Nickel Anode Consumption. <i>ECS Transactions</i> , 2012 , 41, 69-74	1	
5	Raman Scattering Study of FeCl3 Based Graphite Bi-Intercalation Compounds. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 340, 173-178		
4	Development of Highly Active and Durable Pt Core-Shell Structured Catalyst for Polymer Electrolyte Fuel Cells. <i>Materia Japan</i> , 2020 , 59, 372-378	0.1	
3	Electrolytic Synthesis of Perfluorotrimethylamine with CaF2 Added Carbon and Original Carbon Anodes. <i>Electrochemistry</i> , 2005 , 73, 661-667	1.2	
2	Recent Progress and Material Development in Electrolyte Solutions of Lithium-ion Batteries for EV Application. <i>Journal of the Japan Society of Colour Material</i> , 2020 , 93, 54-58	О	
1	Silicon LeafPowder□ Anode 2021 , 323-332		