Josefa Mallol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3582785/publications.pdf

Version: 2024-02-01

46984 62565 6,890 104 47 80 citations h-index g-index papers 104 104 104 5920 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model. Pharmacological Research, 2019, 139, 337-347.	3.1	15
2	Differential effect of amphetamine over the corticotropin-releasing factor CRF2 receptor, the orexin OX1 receptor and the CRF2-OX1 heteroreceptor complex. Neuropharmacology, 2019, 152, 102-111.	2.0	11
3	Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons. Molecular Neurobiology, 2018, 55, 4718-4730.	1.9	14
4	Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins. Frontiers in Pharmacology, 2018, 9, 106.	1.6	54
5	Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. BMC Biology, 2018, 16, 24.	1.7	70
6	Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 4537-4550.	1.9	44
7	Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area. Journal of Neuroscience, 2017, 37, 1176-1186.	1.7	34
8	A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons. Journal of Biological Chemistry, 2016, 291, 13048-13062.	1.6	41
9	Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biology, 2016, 14, 26.	1.7	97
10	Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1. Journal of Leukocyte Biology, 2016, 99, 349-359.	1.5	20
11	Allosteric interactions between agonists and antagonists within the adenosine A _{2A} receptor-dopamine D ₂ receptor heterotetramer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3609-18.	3.3	135
12	Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. Journal of Neuroscience, 2015, 35, 6639-6653.	1.7	66
13	Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia. Molecular Neurobiology, 2015, 52, 1408-1420.	1.9	49
14	Moonlighting Adenosine Deaminase: A Target Protein for Drug Development. Medicinal Research Reviews, 2015, 35, 85-125.	5.0	54
15	Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D ₁ -D ₃ Receptor Heterotetramer. Molecular Pharmacology, 2014, 86, 417-429.	1.0	114
16	Cocaine Disrupts Histamine H ₃ Receptor Modulation of Dopamine D ₁ Receptor Signaling: $\ddot{l}f$ ₁ -D ₁ -H ₃ Receptor Complexes as Key Targets for Reducing Cocaine's Effects. Journal of Neuroscience, 2014, 34, 3545-3558.	1.7	66
17	Intracellular Calcium Levels Determine Differential Modulation of Allosteric Interactions within G Protein-Coupled Receptor Heteromers. Chemistry and Biology, 2014, 21, 1546-1556.	6.2	51
18	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	2.0	83

#	Article	IF	Citations
19	l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	2.0	77
20	The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB Journal, 2013, 27, 1048-1061.	0.2	35
21	Homodimerization of adenosine A1 receptors in brain cortex explains the biphasic effects of caffeine. Neuropharmacology, 2013, 71, 56-69.	2.0	30
22	Detection of Receptor Heteromers Involving Dopamine Receptors by the Sequential BRET-FRET Technology. Methods in Molecular Biology, 2013, 964, 95-105.	0.4	10
23	Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers. PLoS ONE, 2013, 8, e61245.	1.1	112
24	Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland. PLoS Biology, 2012, 10, e1001347.	2.6	132
25	Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain. Journal of Biological Chemistry, 2012, 287, 20851-20865.	1.6	196
26	Adenosine Deaminase Enhances the Immunogenicity of Human Dendritic Cells from Healthy and HIV-Infected Individuals. PLoS ONE, 2012, 7, e51287.	1.1	21
27	A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. Biochemical Journal, 2011, 435, 701-709.	1.7	37
28	Dopamine D1-histamine H3 Receptor Heteromers Provide a Selective Link to MAPK Signaling in GABAergic Neurons of the Direct Striatal Pathway. Journal of Biological Chemistry, 2011, 286, 5846-5854.	1.6	109
29	G _i protein coupling to adenosine A ₁ â€"A _{2A} receptor heteromers in human brain caudate nucleus. Journal of Neurochemistry, 2010, 114, 972-980.	2.1	14
30	A Hybrid Indoloquinolizidine Peptide as Allosteric Modulator of Dopamine D1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 876-885.	1.3	13
31	Direct involvement of $ f $ -1 receptors in the dopamine D $<$ sub>1 $<$ /sub> receptor-mediated effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18676-18681.	3.3	153
32	Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers. Journal of Biological Chemistry, 2010, 285, 27346-27359.	1.6	102
33	G Protein-Coupled Receptor Heteromers as New Targets for Drug Development. Progress in Molecular Biology and Translational Science, 2010, 91, 41-52.	0.9	46
34	Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. Journal of Leukocyte Biology, 2010, 89, 127-136.	1.5	59
35	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	1.6	65
36	GPCR homomers and heteromers: A better choice as targets for drug development than GPCR monomers?., 2009, 124, 248-257.		84

#	Article	IF	Citations
37	Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist–antagonist binding modulation. Biochemical Pharmacology, 2009, 78, 1456-1463.	2.0	39
38	Immunological dysfunction in HIVâ€1â€infected individuals caused by impairment of adenosine deaminaseâ€induced costimulation of Tâ€cell activation. Immunology, 2009, 128, 393-404.	2.0	25
39	Adenosine deaminase enhances Tâ€cell response elicited by dendritic cells loaded with inactivated HIV. Immunology and Cell Biology, 2009, 87, 634-639.	1.0	26
40	Marked changes in signal transduction upon heteromerization of dopamine D $<$ sub $>$ 1 $<$ /sub $>$ and histamine H $<$ sub $>$ 3 $<$ /sub $>$ receptors. British Journal of Pharmacology, 2009, 157, 64-75.	2.7	138
41	The association of metabotropic glutamate receptor type 5 with the neuronal Ca ²⁺ â€binding protein 2 modulates receptor function. Journal of Neurochemistry, 2009, 111, 555-567.	2.1	27
42	Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nature Methods, 2008, 5, 727-733.	9.0	269
43	Human adenosine deaminase as an allosteric modulator of human A ₁ adenosine receptor: abolishment of negative cooperativity for [³ H](R)â€pia binding to the caudate nucleus. Journal of Neurochemistry, 2008, 107, 161-170.	2.1	45
44	Novel pharmacological targets based on receptor heteromers. Brain Research Reviews, 2008, 58, 475-482.	9.1	32
45	Detection of Heteromers Formed by Cannabinoid CB ₁ , Dopamine D ₂ , and Adenosine A _{2A} G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer. Scientific World Journal, The, 2008, 8, 1088-1097.	0.8	105
46	Actin-binding Protein α-Actinin-1 Interacts with the Metabotropic Glutamate Receptor Type 5b and Modulates the Cell Surface Expression and Function of the Receptor. Journal of Biological Chemistry, 2007, 282, 12143-12153.	1.6	37
47	The neuronal Ca2+-binding protein 2 (NECAB2) interacts with the adenosine A2A receptor and modulates the cell surface expression and function of the receptor. Molecular and Cellular Neurosciences, 2007, 36, 1-12.	1.0	37
48	Basic Concepts in G-Protein-Coupled Receptor Homo- and Heterodimerization. Scientific World Journal, The, 2007, 7, 48-57.	0.8	83
49	Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: The receptor–dimer cooperativity index. , 2007, 116, 343-354.		70
50	The Two-State Dimer Receptor Model: A General Model for Receptor Dimers. Molecular Pharmacology, 2006, 69, 1905-1912.	1.0	76
51	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	1.7	553
52	Glutamate Released by Dendritic Cells as a Novel Modulator of T Cell Activation. Journal of Immunology, 2006, 177, 6695-6704.	0.4	130
53	Partners for Adenosine A ₁ Receptors. Journal of Molecular Neuroscience, 2005, 26, 221-232.	1.1	25
54	Heptaspanning Membrane Receptors and Cytoskeletal/Scaffolding Proteins: Focus on Adenosine, Dopamine, and Metabotropic Glutamate Receptor Function. Journal of Molecular Neuroscience, 2005, 26, 277-292.	1.1	25

#	Article	IF	Citations
55	Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. Journal of Neurochemistry, 2005, 92, 337-348.	2.1	56
56	Dimer-based model for heptaspanning membrane receptors. Trends in Biochemical Sciences, 2005, 30, 360-366.	3.7	60
57	Group I Metabotropic Glutamate Receptors Mediate a Dual Role of Glutamate in T Cell Activation. Journal of Biological Chemistry, 2004, 279, 33352-33358.	1.6	113
58	Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. Journal of Neurochemistry, 2004, 91, 547-557.	2.1	78
59	Mutual regulation between metabotropic glutamate type $1\hat{l}\pm\hat{A}$ receptor and caveolin proteins: from traffick to constitutive activity. Experimental Cell Research, 2004, 300, 23-34.	1.2	26
60	Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends in Biochemical Sciences, 2003, 28, 238-243.	3.7	74
61	Metabotropic glutamate type 1α receptor localizes in low-density caveolin-rich plasma membrane fractions. Journal of Neurochemistry, 2003, 86, 785-791.	2.1	31
62	Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. Journal of Neurochemistry, 2003, 88, 726-734.	2.1	139
63	Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Experimental Cell Research, 2003, 285, 72-90.	1.2	65
64	The Adenosine A2A Receptor Interacts with the Actin-binding Protein \hat{l}_{\pm} -Actinin. Journal of Biological Chemistry, 2003, 278, 37545-37552.	1.6	100
65	A ₁ Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation. Brain Pathology, 2003, 13, 440-451.	2.1	150
66	Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors. Journal of Biological Chemistry, 2002, 277, 18091-18097.	1.6	450
67	Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminaseâ€'CD26 interaction. Biochemical Journal, 2002, 361, 203.	1.7	34
68	Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase–CD26 interaction. Biochemical Journal, 2002, 361, 203-209.	1.7	57
69	Modulation of GH4 Cell Cycle via A1 Adenosine Receptors. Journal of Neurochemistry, 2002, 69, 2145-2154.	2.1	8
70	Regulation of L-Type Calcium Channels in GH4 Cells via A1 Adenosine Receptors. Journal of Neurochemistry, 2002, 69, 2546-2554.	2.1	19
71	Involvement of Caveolin in Ligand-Induced Recruitment and Internalization of A ₁ Adenosine Receptor and Adenosine Deaminase in an Epithelial Cell Line. Molecular Pharmacology, 2001, 59, 1314-1323.	1.0	84
72	Adenosine/dopamine receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 296-302.	1.4	11

#	Article	IF	Citations
73	Adenosine-glutamate receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 316-322.	1.4	4
74	Metabotropic Glutamate $1\hat{l}_{\pm}$ and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes. Journal of Biological Chemistry, 2001, 276, 18345-18351.	1.6	170
75	Comodulation of CXCR4 and CD26 in Human Lymphocytes. Journal of Biological Chemistry, 2001, 276, 19532-19539.	1.6	89
76	The Heat Shock Cognate Protein hsc73 Assembles with A 1 Adenosine Receptors To Form Functional Modules in the Cell Membrane. Molecular and Cellular Biology, 2000, 20, 5164-5174.	1,1	62
77	Epidermal growth factor (EGF)-induced up-regulation and agonist- and antagonist-induced desensitization and internalization of A1 adenosine receptors in a pituitary-derived cell line. Brain Research, 1999, 816, 47-57.	1.1	29
78	Ecto-adenosine deaminase: An ecto-enzyme and a costimulatory protein acting on a variety of cell surface receptors., 1998, 45, 261-268.		12
79	Adenosine Deaminase and A1 Adenosine Receptors Internalize Together following Agonist-induced Receptor Desensitization. Journal of Biological Chemistry, 1998, 273, 17610-17617.	1.6	93
80	Ligand-Induced Phosphorylation, Clustering, and Desensitization of A ₁ Adenosine Receptors. Molecular Pharmacology, 1997, 52, 788-797.	1.0	80
81	Cell surface adenosine deaminase: Much more than an ectoenzyme. Progress in Neurobiology, 1997, 52, 283-294.	2.8	224
82	Dipropylcyclopentylxanthine triggers apoptosis in Jurkat T cells by a receptor-independent mechanism. Cell Death and Differentiation, 1997, 4, 639-646.	5.0	3
83	Calcium mobilization in Jurkat cells via A2b adenosine receptors. British Journal of Pharmacology, 1997, 122, 1075-1082.	2.7	57
84	Ammonium toxicity in different cell lines. , 1997, 56, 530-537.		19
85	Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Letters, 1996, 380, 219-223.	1.3	150
86	Adenosine Deaminase Interacts with A ₁ Adenosine Receptors in Pig Brain Cortical Membranes. Journal of Neurochemistry, 1996, 66, 1675-1682.	2.1	58
87	A1 Adenosine receptors can occur manifesting two kinetic components of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX) binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 485-491.	1.4	2
88	Solubilization and molecular characterization of the nitrobenzylthioinosine binding sites from pig kidney brush-border membranes. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 94-102.	1,4	9
89	Adenine nucleotides and adenosine metabolism in pig kidney proximal tubule membranes. Journal of Cellular Physiology, 1993, 157, 77-83.	2.0	12
90	Role of Histidine Residues in Agonist and Antagonist Binding Sites of A1Adenosine Receptor. Journal of Neurochemistry, 1993, 60, 1525-1533.	2.1	10

#	Article	IF	CITATIONS
91	Characterization of adenosine receptors in brushâ€border membranes from pig kidney. British Journal of Pharmacology, 1992, 107, 671-678.	2.7	23
92	The distribution of A1 adenosine receptor and 5?-nucleotidase in pig brain cortex subcellular fractions. Neurochemical Research, 1992, 17, 129-139.	1.6	10
93	The Adenosine Receptors Present on the Plasma Membrane of Chromaffin Cells Are of the A2bSubtype. Journal of Neurochemistry, 1992, 59, 425-431.	2.1	32
94	Modulation of adenosine agonist [3H]N6-(R)-phenylisopropyladenosine binding to pig brain cortical membranes by changes of membrane fluidity and of medium physicochemical characteristics. European Journal of Pharmacology, 1992, 225, 7-14.	2.7	15
95	N-ethylmaleimide affects agonist binding to Aladenosine receptors differently in the presence than in the absence of ligand. Biochemical and Biophysical Research Communications, 1991, 181, 213-218.	1.0	9
96	Adenosine Receptors in Myelin Fractions and Subtractions: The Effect of the Agonist (R)-Phenylisopropyladenosine on Myelin Membrane Microviscosity. Journal of Neurochemistry, 1991, 57, 1623-1629.	2.1	15
97	Effect of phospholipases and proteases on the [3H]N6-(R)-phenylisopropyladenosine ([3H]R-PIA) binding to A1 adenosine receptors from pig cerebral cortex. Journal of Cellular Biochemistry, 1991, 47, 278-288.	1.2	13
98	Adenosine metabolism in kidney slices under normoxic conditions. Journal of Cellular Physiology, 1990, 143, 344-351.	2.0	5
99	Quantum Chemical Study of the Electronic and Conformational Characteristics of Adenosine and 8-Substituted Derivatives: Functional Implications in the Mechanism of Reaction of Adenosine Deaminase. Journal of Pharmaceutical Sciences, 1990, 79, 133-137.	1.6	10
100	Ab initio study of the protonation and the tautomerism of the 7-aminopyrazolopyrimidine molecule. Journal of Organic Chemistry, 1990, 55, 753-756.	1.7	9
101	Theoretical Approximation to the Reaction Mechanism of Adenosine Deaminase. QSAR and Combinatorial Science, 1989, 8, 109-114.	1.4	9
102	Isolation and characterization of bovine brain myelin distribution of 5?-nucleotidase. Neurochemical Research, 1988, 13, 349-357.	1.6	7
103	Localization of 5?-nucleotidase in bovine brain myelin fraction and myelin subfractions. Neurochemical Research, 1988, 13, 359-368.	1.6	4
104	Modification of 5′-Nucleotidase Activity by Divalent Cations and Nucleotides. Journal of Neurochemistry, 1983, 40, 1205-1211.	2.1	36