Fernando Rubio-Marcos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3582770/publications.pdf Version: 2024-02-01

	117625	149698
3,865	34	56
citations	h-index	g-index
123	123	3769
docs citations	times ranked	citing authors
	3,865 citations 123 docs citations	3,865 34 citations h-index 123 123 docs citations 123 times ranked

#	Article	lF	CITATIONS
1	Sintering and properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics. Journal of the European Ceramic Society, 2007, 27, 4125-4129.	5.7	184
2	Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material. Renewable and Sustainable Energy Reviews, 2018, 81, 2759-2770.	16.4	181
3	Ferroelectric domain wall motion induced by polarized light. Nature Communications, 2015, 6, 6594.	12.8	138
4	Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29, 3045-3052.	5.7	127
5	Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral–Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties. ACS Applied Materials & Interfaces, 2015, 7, 23080-23088.	8.0	122
6	Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. Journal of Catalysis, 2010, 275, 288-293.	6.2	120
7	Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, 2016, 112, 246-253.	9.2	115
8	Correlation between the piezoelectric properties and the structure of leadâ€free KNNâ€modified ceramics, studied by Raman Spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 639-643.	2.5	101
9	High spatial resolution structure of (K,Na)NbO3 lead-free ferroelectric domains. Journal of Materials Chemistry, 2012, 22, 9714.	6.7	97
10	Reversible optical control of macroscopic polarization in ferroelectrics. Nature Photonics, 2018, 12, 29-32.	31.4	97
11	Understanding the piezoelectric properties in potassium-sodium niobate-based lead-free piezoceramics: Interrelationship between intrinsic and extrinsic factors. Journal of the European Ceramic Society, 2017, 37, 3501-3509.	5.7	90
12	Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics. Materials Chemistry and Physics, 2010, 123, 91-97.	4.0	82
13	Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction. Journal of the European Ceramic Society, 2010, 30, 2763-2771.	5.7	79
14	High Strain in (K,Na)NbO ₃ -Based Lead-Free Piezoelectric Fibers. Chemistry of Materials, 2014, 26, 3838-3848.	6.7	79
15	Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics. Journal of the European Ceramic Society, 2010, 30, 737-742.	5.7	77
16	Effects of Poling Process on KNNâ€Modified Piezoceramic Properties. Journal of the American Ceramic Society, 2010, 93, 318-321.	3.8	73
17	Properties related phase evolution in porcelain ceramics. Journal of the European Ceramic Society, 2007, 27, 4065-4069.	5.7	70
18	Ferroelectric domain structure of lead-free potassium-sodium niobate ceramics. Journal of the European Ceramic Society, 2011, 31, 1861-1864.	5.7	68

#	Article	IF	CITATIONS
19	Original Synthetic Route To Obtain a SrAl ₂ O ₄ Phosphor by the Molten Salt Method: Insights into the Reaction Mechanism and Enhancement of the Persistent Luminescence. Inorganic Chemistry, 2015, 54, 9896-9907.	4.0	59
20	Energy Product Enhancement in Imperfectly Exchange oupled Nanocomposite Magnets. Advanced Electronic Materials, 2016, 2, 1500365.	5.1	47
21	Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509, 8804-8811.	5.5	43
22	Structure, microstructure and electrical properties of Cu2+ doped (K,Na,Li)(Nb,Ta,Sb)O3 piezoelectric ceramics. Ceramics International, 2013, 39, 4139-4149.	4.8	43
23	Structural, microstructural and electrical properties evolution of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics through NiO doping. Journal of the European Ceramic Society, 2011, 31, 2309-2317.	5.7	42
24	New concepts for process intensification in the conversion of glycerol carbonate to glycidol. Applied Catalysis B: Environmental, 2013, 129, 575-579.	20.2	42
25	Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics. Journal Physics D: Applied Physics, 2009, 42, 025402.	2.8	41
26	Graphene-encapsulated aluminium oxide nanofibers as a novel type of nanofillers for electroconductive ceramics. Journal of the European Ceramic Society, 2015, 35, 4017-4021.	5.7	41
27	Insights into the room temperature magnetism of ZnOâ^•Co3O4 mixtures. Journal of Applied Physics, 2008, 103, 083905.	2.5	40
28	Piezoceramics properties as a function of the structure in the system (K,Na,Li)(Nb,Ta,Sb)O ₃ . IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1835-1842.	3.0	40
29	ZnO Nanoporous Spheres with Broad-Spectrum Antimicrobial Activity by Physicochemical Interactions. ACS Applied Nano Materials, 2018, 1, 3214-3225.	5.0	39
30	Sintering behaviour of nanostructured glass-ceramic glazes. Ceramics International, 2010, 36, 1845-1850.	4.8	38
31	Monitoring the catalytic synthesis of glycerol carbonate by real-time attenuated total reflection FTIR spectroscopy. Applied Catalysis A: General, 2011, 409-410, 106-112.	4.3	38
32	Exploring different sintering atmospheres to reduce nonlinear response of modified KNN piezoceramics. Journal of the European Ceramic Society, 2013, 33, 825-831.	5.7	38
33	Some clues about the interphase reaction between ZnO and MnO2 oxides. Journal of Solid State Chemistry, 2009, 182, 1211-1216.	2.9	37
34	Revealing the role of cationic displacement in potassium–sodium niobate lead-free piezoceramics by adding W ⁶⁺ ions. Journal of Materials Chemistry C, 2015, 3, 4168-4178.	5.5	36
35	Designing nanostructured strontium aluminate particles with high luminescence properties. Journal of Materials Chemistry C, 2015, 3, 1268-1276.	5.5	35
36	Intermediate phases formation during the synthesis of Bi4Ti3O12 by solid state reaction. Ceramics International, 2010, 36, 1319-1325.	4.8	34

#	Article	IF	CITATIONS
37	Extensive domain wall contribution to strain in a (K,Na)NbO3-based lead-free piezoceramics quantified from high energy X-ray diffraction. Journal of the European Ceramic Society, 2016, 36, 2489-2494.	5.7	34
38	A Solid-State Electrochemical Reaction as the Origin of Magnetism at Oxide Nanoparticle Interfaces. Journal of the Electrochemical Society, 2010, 157, E31.	2.9	33
39	Nanostructured ZnO/sepiolite monolithic sorbents for H ₂ S removal. Journal of Materials Chemistry A, 2015, 3, 1306-1316.	10.3	33
40	The impact of the synthesis conditions on SrAl 2 O 4 :Eu, Dy formation for a persistent afterglow. Materials and Design, 2016, 108, 354-363.	7.0	33
41	Effect of the temperature on the synthesis of (K,Na)NbO3-modified nanoparticles by a solid state reaction route. Journal of Nanoparticle Research, 2010, 12, 2495-2502.	1.9	31
42	On the origin of remanence enhancement in exchange-uncoupled CoFe2O4-based composites. Applied Physics Letters, 2014, 105, .	3.3	30
43	A low-energy milling approach to reduce particle size maintains the luminescence of strontium aluminates. RSC Advances, 2015, 5, 42559-42567.	3.6	30
44	Experimental evidence of charged domain walls in lead-free ferroelectric ceramics: light-driven nanodomain switching. Nanoscale, 2018, 10, 705-715.	5.6	29
45	Control of the Interphases Formation Degree in Co ₃ O ₄ /ZnO Catalysts. ChemCatChem, 2013, 5, 1431-1440.	3.7	28
46	Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming. ACS Applied Materials & Interfaces, 2017, 9, 43553-43562.	8.0	28
47	Light-Induced Capacitance Tunability in Ferroelectric Crystals. ACS Applied Materials & Interfaces, 2018, 10, 21804-21807.	8.0	28
48	Polymorphic phase boundary in piezoelectric oxides. Journal of Applied Physics, 2020, 127, .	2.5	26
49	Modification of optical properties in ZnO particles by surface deposition and anchoring of NiO nanoparticles. Journal of Alloys and Compounds, 2011, 509, 2891-2896.	5.5	25
50	Resolution of the ferroelectric domains structure in (K,Na)NbO3-based lead-free ceramics by confocal Raman microscopy. Journal of Applied Physics, 2013, 113, .	2.5	25
51	Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials. Applied Physics Letters, 2016, 108, .	3.3	24
52	Effect of lanthanide doping on structural, microstructural and functional properties of K0.5Na0.5NbO3 lead-free piezoceramics. Ceramics International, 2016, 42, 17530-17538.	4.8	24
53	Electric field effect on the microstructure and properties of Ba _{0.9} Ca _{0.1} Ti _{0.9} Ca _{O₃ (BCTZ) lead-free ceramics. Journal of Materials Chemistry A, 2018, 6, 5419-5429.}	10.3	24
54	Accelerated disintegration of compostable Ecovio polymer by using ZnO particles as filler. Polymer Degradation and Stability, 2021, 185, 109501.	5.8	24

#	Article	IF	CITATIONS
55	High chemical stability of stoneware tiles containing waste metals. Journal of the European Ceramic Society, 2010, 30, 2997-3004.	5.7	23
56	Mechanism of Ni _{1–<i>x</i>} Zn _{<i>x</i>} O Formation by Thermal Treatments on NiO Nanoparticles Dispersed over ZnO. Journal of Physical Chemistry C, 2011, 115, 13577-13583.	3.1	23
57	Photo-Controlled Ferroelectric-Based Nanoactuators. ACS Applied Materials & Interfaces, 2019, 11, 13921-13926.	8.0	23
58	Precise Tuning of the Nanostructured Surface leading to the Luminescence Enhancement in SrAl2O4 Based Core/Shell Structure. Scientific Reports, 2017, 7, 462.	3.3	22
59	Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3-BaTiO3 lead free piezoceramics: Confocal Raman Microscopy. Journal of Alloys and Compounds, 2018, 739, 799-805.	5.5	22
60	Control of the Crystalline Structure and Piezoelectric Properties of (K,Na,Li)(Nb,Ta,Sb)O\$_{3} Ceramics through Transition Metal Oxide Doping. Applied Physics Express, 2011, 4, 101501.	2.4	21
61	Self-Forming 3D Core–Shell Ceramic Nanostructures for Halogen-Free Flame Retardant Materials. ACS Applied Materials & Interfaces, 2016, 8, 9462-9471.	8.0	21
62	The Benefits of the ZnO/Clay Composite Formation as a Promising Antifungal Coating for Paint Applications. Applied Sciences (Switzerland), 2020, 10, 1322.	2.5	21
63	New insights into the properties of KxNa(1â~'x)NbO3 ceramics obtained by hydrothermal synthesis. Ceramics International, 2014, 40, 14701-14712.	4.8	20
64	Effect of Processing on the Sintering of High Dielectric constant CaCu3Ti4O12 Ceramics. International Journal of Applied Ceramic Technology, 2011, 8, 1201-1207.	2.1	19
65	Influences of secondary phases on ferroelectric properties of Bi(Na,K)TiO3 ceramics. Ceramics International, 2015, 41, 5380-5386.	4.8	18
66	Towards Blue Long-Lasting Luminescence of Eu/Nd-Doped Calcium-Aluminate Nanostructured Platelets via the Molten Salt Route. Nanomaterials, 2019, 9, 1473.	4.1	18
67	Evolution of structural and electrical properties of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics through CoO doping. Solid State Communications, 2011, 151, 1463-1466.	1.9	17
68	Electroconductive composite of zirconia and hybrid graphene/alumina nanofibers. Journal of the European Ceramic Society, 2017, 37, 3713-3719.	5.7	17
69	The fight against multidrug-resistant organisms: The role of ZnO crystalline defects. Materials Science and Engineering C, 2019, 99, 575-581.	7.3	17
70	Influence of the BaTiO3 addition to K0.5Na0.5NbO3 lead-free ceramics on the vacancy-like defect structure and dielectric properties. Journal of the European Ceramic Society, 2021, 41, 1288-1298.	5.7	17
71	Influence of B-site compositional homogeneity on properties of (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-based piezoelectric ceramics. Journal of the European Ceramic Society, 2014, 34, 2249-2257.	5.7	16
72	Characterization of Carbon Nanoparticles in Thin-Film Nanocomposites by Confocal Raman Microscopy. Journal of Physical Chemistry C, 2014, 118, 10488-10494.	3.1	16

#	Article	IF	CITATIONS
73	Exploring New Mechanisms for Effective Antimicrobial Materials: Electric Contact-Killing Based on Multiple Schottky Barriers. ACS Applied Materials & Interfaces, 2017, 9, 26219-26225.	8.0	16
74	Ag-AgO nanostructures on glass substrates by solid-state dewetting: From extended to localized surface plasmons. Journal of Applied Physics, 2018, 124, .	2.5	16
75	Improved non-linear behaviour of ZnO-based varistor thick films prepared by tape casting and screen printing. Journal of the European Ceramic Society, 2007, 27, 3887-3891.	5.7	15
76	Mechanical Properties and Dimensional Effects of ZnO- and SnO2-Based Varistors. Journal of the American Ceramic Society, 2008, 91, 3105-3108.	3.8	15
77	In situ formation of Mn-doped ZnO aligned structures by rapid heating method. Materials Letters, 2009, 63, 212-214.	2.6	15
78	Poling and depoling influence on the micro-stress states and phase coexistence in KNN-based piezoelectric ceramics. Journal of the European Ceramic Society, 2019, 39, 1011-1019.	5.7	15
79	Photocontrolled Strain in Polycrystalline Ferroelectrics via Domain Engineering Strategy. ACS Applied Materials & Interfaces, 2021, 13, 20858-20864.	8.0	15
80	Tuning of Active Sites in Niï£;Nbï£;O Catalysts for the Direct Conversion of Ethane to Acetonitrile or Ethylene. ChemCatChem, 2011, 3, 1637-1645.	3.7	14
81	Functionalization of gamma-alumina nanofibers by alpha-alumina via solution combustion synthesis. Ceramics International, 2014, 40, 12603-12607.	4.8	14
82	Evaluation of the performance of a lead-free piezoelectric material for energy harvesting. Smart Materials and Structures, 2015, 24, 115011.	3.5	14
83	Performance and Stability of Wet-Milled CoAl2O4, Ni/CoAl2O4, and Pt,Ni/CoAl2O4 for Soot Combustion. Catalysts, 2020, 10, 406.	3.5	14
84	One more step against nanotoxicity: Hierarchical particles designed to antifungal properties. Materials and Design, 2017, 134, 188-195.	7.0	13
85	Pt-free CoAl2O4 catalyst for soot combustion with NOx/O2. Applied Catalysis A: General, 2020, 591, 117404.	4.3	13
86	Enhancing NIR emission in ZnAl ₂ O ₄ :Nd,Ce nanofibers by co-doping with Ce and Nd: a promising biomarker material with low cytotoxicity. Journal of Materials Chemistry C, 2021, 9, 657-670.	5.5	13
87	Insights into the dielectric and luminescent properties of Na0.5Pr0.003Bi0.497â^'xLaxTiO3 synthesized by the Pechini method. Dalton Transactions, 2013, 42, 6879.	3.3	12
88	Influence of MoO3 on electrical and microstructural properties of (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3. Journal of Materials Science: Materials in Electronics, 2013, 24, 3587-3593.	2.2	10
89	Ferroelectric Properties of Bi _{0.5} (Na _{0.8} K _{0.2}) _{0.5} TiO ₃ Ceramics. Advanced Materials Research, 2014, 975, 3-8.	0.3	10
90	Unveiling the role of the hexagonal polymorph on SrAl ₂ O ₄ -based phosphors. RSC Advances, 2018, 8, 28918-28927.	3.6	10

#	Article	IF	CITATIONS
91	Pt mechanical dispersion on non-porous alumina for soot oxidation. Catalysis Communications, 2020, 140, 105999.	3.3	10
92	Nanostructural evolution in mesoporous networks using in situ High-Speed Temperature Scanner. Ceramics International, 2018, 44, 12265-12272.	4.8	9
93	Investigating Raman spectra and density functional theory calculations on SrAl ₂ O ₄ polymorphs. Journal of Raman Spectroscopy, 2019, 50, 91-101.	2.5	9
94	Boosting phosphorescence efficiency by crystal anisotropy in SrAl2O4:Eu,Dy textured ceramic layers. Journal of the European Ceramic Society, 2020, 40, 1677-1683.	5.7	9
95	Effect of fugitive phase addition on porosity evolution and properties of stoneware tiles. Advances in Applied Ceramics, 2010, 109, 219-224.	1.1	8
96	The impact of microstructure in (K,Na)NbO3-based lead-Free piezoelectric fibers: From processing to device production for structural health monitoring. Journal of the European Ceramic Society, 2016, 36, 2745-2754.	5.7	8
97	Stabilization of the morphotropic phase boundary in (1 â^' x)Bi0.5Na0.5TiO3–xBaTiO3 ceramics throu two alternative synthesis pathways. Journal of Materials Science: Materials in Electronics, 2019, 30, 18405-18412.	ıgh 2.2	8
98	Confocal Raman Microscopy, Synchrotron X-ray Diffraction, and Photoacoustic Study of Ba _{0.85} Ca _{0.15} Ti _{0.90} Zr _{0.10} O ₃ : Understanding Structural and Microstructural Response to the Electric Field. ACS Applied Electronic Materials, 2021, 3, 2966-2976.	4.3	7
99	Influence of surface modifiers on hydrothermal synthesis of K x Na(1â^'x)NbO3. Journal of Materials Science: Materials in Electronics, 2015, 26, 9402-9408.	2.2	6
100	Thermal and microstructural analysis of doped alumina nanofibers. Thermochimica Acta, 2015, 602, 43-48.	2.7	6
101	Large coincidence lattice on Au/Fe 3 O 4 incommensurate structure for spintronic applications. Applied Surface Science, 2015, 355, 698-701.	6.1	5
102	Mechanical properties enhancement in potassium-sodium niobate lead-free piezoceramics: the impact of chemical modifications. Journal of Materials Science: Materials in Electronics, 2017, 28, 5128-5134.	2.2	5
103	Opening a New Gate to Glass Preservative with Long-Lasting Antimicrobial Activity as Replacement of Parabens. ACS Sustainable Chemistry and Engineering, 2017, 5, 294-302.	6.7	5
104	Enhancement of piezoelectric properties stability of submicron-structured piezoceramics obtained by spark plasma sintering. Journal of the European Ceramic Society, 2018, 38, 4659-4663.	5.7	5
105	Correlation between the structure and the piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics studied by XRD and Raman spectroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1826-1834.	3.0	4
106	Dielectric and ferroelectric properties evolution of (1â^'x)(Bi0.5Na0.5TiO3)–xK0.5Na0.5NbO3 piezoceramics. Bulletin of Materials Science, 2020, 43, 1.	1.7	4
107	Piezoelectric and structural properties of bismuth sodium potassium titanate lead-free ceramics for energy harvesting. Journal of Materials Science: Materials in Electronics, 2021, 32, 19117-19125.	2.2	4
108	Confocal Raman Microscopy Can Make a Large Difference: Resolving and Manipulating Ferroelectric Domains forÂPiezoelectric Engineering. Springer Series in Surface Sciences, 2018, , 531-556.	0.3	3

Fernando Rubio-Marcos

#	Article	IF	CITATIONS
109	Aluminate-Based Nanostructured Luminescent Materials: Design of Processing and Functional Properties. Materials, 2021, 14, 4591.	2.9	3
110	Respuesta Ferro-Piezoeléctrica de (K,Na,Li)(Nb,Ta,Sb)O ₃ Poroso. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2014, 53, 48-52.	1.9	3
111	Anomalous local lattice disorder and distortion in A2Mo2O7 pyrochlores. Journal of Alloys and Compounds, 2017, 723, 327-332.	5.5	2
112	Viability Study of a Safe Method for Health to Prepare Cement Pastes with Simultaneous Nanometric Functional Additions. Advances in Materials Science and Engineering, 2018, 2018, 1-13.	1.8	2
113	Estudio de las condiciones de procesamiento de Bi _{0.5} (Na _{0.8} K _{0.2}) _{0.5} TiO ₃ . Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2014, 53, 27-31.	1.9	2
114	Tape Casting of Graphite Material: A New Electrochemical Sensor. Electroanalysis, 2006, 18, 1614-1619.	2.9	1
115	XANES experimental evidence of double exchange in ferromagnetic Mn–Zn–O. Advances in Applied Ceramics, 2009, 108, 263-266.	1.1	0
116	Influence of MoO <inf>3</inf> on electrical and microstructural properties of (K <inf>0.44</inf> Na <inf>0.52</inf> Li <inf>0.04</inf>)(Nb <inf>0.86, 2012, , .</inf>	gt;Ta <ir< td=""><td>ıf>0.10<</td></ir<>	ıf>0.10<