
Hadi Samadian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3582365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and Evaluation of Extended-Release Nanofibers Loaded with Pramipexole as a Novel Oral Drug Delivery System: Hybridization of Hydrophilic and Hydrophobic Polymers. Journal of Pharmaceutical Innovation, 2023, 18, 287-299.	1.1	4
2	Exopolysaccharide from the yeast Papiliotrema terrestris PT22AV for skin wound healing. Journal of Advanced Research, 2023, 46, 61-74.	4.4	10
3	Plasmonic hyperthermia or radiofrequency electric field hyperthermia of cancerous cells through green-synthesized curcumin-coated gold nanoparticles. Lasers in Medical Science, 2022, 37, 1333-1341.	1.0	21
4	Biologically modified electrospun polycaprolactone nanofibrous scaffold promotes osteogenic differentiation. Journal of Drug Delivery Science and Technology, 2022, 68, 103050.	1.4	2
5	Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application. Journal of Materials Research, 2022, 37, 796-806.	1.2	7
6	Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydrate Polymers, 2022, 284, 119152.	5.1	34
7	Fabrication and Characterization of Nanocomposite Hydrogel Based on Alginate/Nano-Hydroxyapatite Loaded with Linum usitatissimum Extract as a Bone Tissue Engineering Scaffold. Marine Drugs, 2022, 20, 20.	2.2	13
8	Bacterial Polyglucuronic Acid/Alginate/Carbon Nanofibers Hydrogel Nanocomposite as a Potential Scaffold for Bone Tissue Engineering. Materials, 2022, 15, 2494.	1.3	6
9	Nanofibrous electroconductive nerve guide conduits based on polyanilineâ€coâ€polydopamine random copolymer for peripheral nerve regeneration. Journal of Applied Polymer Science, 2022, 139, .	1.3	12
10	Potential therapeutic effects of curcumin coated silver nanoparticle in the treatment of cutaneous leishmaniasis due to Leishmania major in-vitro and in a murine model. Journal of Drug Delivery Science and Technology, 2022, 74, 103576.	1.4	16
11	Gelatin-based nanofibrous electrically conductive scaffolds for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 693-702.	1.8	11
12	Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 2021, 134, 111083.	2.7	35
13	Stimuli-responsive natural gums-based drug delivery systems for cancer treatment. Carbohydrate Polymers, 2021, 254, 117422.	5.1	28
14	Effective antibacterial electrospun cellulose acetate nanofibrous patches containing chitosan/erythromycin nanoparticles. International Journal of Biological Macromolecules, 2021, 168, 464-473.	3.6	35
15	Gold nanoparticle-mediated bubbles in cancer nanotechnology. Journal of Controlled Release, 2021, 330, 49-60.	4.8	53
16	Chitosan hydrogel loaded with <scp><i>Aloe vera</i></scp> gel and tetrasodium ethylenediaminetetraacetic acid (<scp>EDTA</scp>) as the wound healing material: in vitro and in vivo study. Journal of Applied Polymer Science, 2021, 138, 50225.	1.3	22
17	Electrically Conductive Nanofibers Composed of Chitosan-grafted Polythiophene and Poly(ε-caprolactone) as Tissue Engineering Scaffold. Fibers and Polymers, 2021, 22, 49-58.	1.1	5
18	Layer by Layer Assembled Chitosan-Coated Gold Nanoparticles for Enhanced siRNA Delivery and Silencing. International Journal of Molecular Sciences, 2021, 22, 831.	1.8	35

#	Article	IF	CITATIONS
19	A bioâ€inspired gelatinâ€based <scp>pH</scp> ―and thermalâ€sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. Journal of Applied Polymer Science, 2021, 138, 50578.	1.3	31
20	Pseudohomogeneous metallic catalyst based on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Scientific Reports, 2021, 11, 4411.	1.6	30
21	Multi-stimuli-responsive magnetic hydrogel based on Tragacanth gum as a de novo nanosystem for targeted chemo/hyperthermia treatment of cancer. Journal of Materials Research, 2021, 36, 858-869.	1.2	23
22	Microfibers nanocomposite based on polyacrylonitrile fibers/bismuth oxide nanoparticles as Xâ€ray shielding material. Journal of Applied Polymer Science, 2021, 138, 50755.	1.3	12
23	Co-electrospun nanofibrous mats loaded with bitter gourd (Momordica charantia) extract as the wound dressing materials: in vitro and in vivo study. BMC Complementary Medicine and Therapies, 2021, 21, 111.	1.2	22
24	Enhanced siRNA Delivery and Selective Apoptosis Induction in H1299 Cancer Cells by Layer-by-Layer-Assembled Se Nanocomplexes: Toward More Efficient Cancer Therapy. Frontiers in Molecular Biosciences, 2021, 8, 639184.	1.6	13
25	Silica nanoparticles-incorporated carbon nanofibers as bioactive biomaterial for bone tissue engineering. Diamond and Related Materials, 2021, 115, 108320.	1.8	24
26	Tarkhineh as a new microencapsulation matrix improves the quality and sensory characteristics of probiotic Lactococcus lactis KUMS-T18 enriched potato chips. Scientific Reports, 2021, 11, 12599.	1.6	43
27	Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Scientific Reports, 2021, 11, 13877.	1.6	52
28	Mesoporous silica coated gold nanorods: a multifunctional theranostic platform for radiotherapy and X-ray imaging. Journal of Porous Materials, 2021, 28, 1961-1968.	1.3	17
29	Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy?. Coordination Chemistry Reviews, 2021, 440, 213974.	9.5	22
30	Folate receptor-targeted nanoprobes for molecular imaging of cancer: Friend or foe?. Nano Today, 2021, 39, 101173.	6.2	16
31	Electro-conductive carbon nanofibers containing ferrous sulfate for bone tissue engineering. Life Sciences, 2021, 282, 119602.	2.0	12
32	Poly (glycerol sebacate) and polyhydroxybutyrate electrospun nanocomposite facilitates osteogenic differentiation of mesenchymal stem cells. Journal of Drug Delivery Science and Technology, 2021, 66, 102796.	1.4	10
33	3D bioprinting technology to mimic the tumor microenvironment: tumor-on-a-chip concept. Materials Today Advances, 2021, 12, 100160.	2.5	13
34	Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. Nanoscale, 2021, 13, 15445-15463.	2.8	15
35	Electro-conductive carbon nanofibers as the promising interfacial biomaterials for bone tissue engineering. Journal of Molecular Liquids, 2020, 298, 112021.	2.3	48
36	A novel bio-inspired conductive, biocompatible, and adhesive terpolymer based on polyaniline, polydopamine, and polylactide as scaffolding biomaterial for tissue engineering application. International Journal of Biological Macromolecules, 2020, 147, 1174-1184.	3.6	56

#	Article	IF	CITATIONS
37	<p>A Review on the Biodistribution, Pharmacokinetics and Toxicity of Bismuth-Based Nanomaterials</p> . International Journal of Nanomedicine, 2020, Volume 15, 7079-7096.	3.3	23
38	Peripheral nerve regeneration in rats by chitosan/alginate hydrogel composited with Berberine and Naringin nanoparticles: in vitro and in vivo study. Journal of Molecular Liquids, 2020, 318, 114226.	2.3	22
39	Alginate hydrogel containing hydrogen sulfide as the functional wound dressing material: In vitro and in vivo study. International Journal of Biological Macromolecules, 2020, 164, 3323-3331.	3.6	47
40	Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discovery Today, 2020, 25, 2182-2200.	3.2	30
41	A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Scientific Reports, 2020, 10, 13366.	1.6	67
42	A novel multi-stimuli-responsive theranostic nanomedicine based on Fe3O4@Au nanoparticles against cancer. Drug Development and Industrial Pharmacy, 2020, 46, 1832-1843.	0.9	16
43	Human plasma protein corona decreases the toxicity of pillar-layer metal organic framework. Scientific Reports, 2020, 10, 14569.	1.6	19
44	Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies. Scientific Reports, 2020, 10, 14853.	1.6	46
45	Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Scientific Reports, 2020, 10, 8312.	1.6	164
46	Dual stimuli-responsive polymeric hollow nanocapsules as "smart―drug delivery system against cancer. Polymer-Plastics Technology and Materials, 2020, 59, 1492-1504.	0.6	15
47	Conducting polymer-based electrically conductive adhesive materials: design, fabrication, properties, and applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 10947-10961.	1.1	30
48	Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. International Journal of Biological Macromolecules, 2020, 154, 795-817.	3.6	79
49	Amphiphilic Carbon Quantum Dots as a Bridge to a Pseudohomogeneous Catalyst for Selective Oxidative Cracking of Alkenes to Aldehydes: A Nonmetallic Oxidation System. ACS Applied Materials & Interfaces, 2020, 12, 31360-31371.	4.0	22
50	Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2020, 117, 111226.	3.8	49
51	Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coordination Chemistry Reviews, 2020, 420, 213432.	9.5	116
52	PEGylated hollow pHâ€responsive polymeric nanocapsules for controlled drug delivery. Polymer International, 2020, 69, 519-527.	1.6	35
53	Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers?. Critical Reviews in Toxicology, 2020, 50, 148-176.	1.9	31
54	Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study. International Journal of Biological Macromolecules, 2020, 150, 380-388.	3.6	68

#	Article	IF	CITATIONS
55	Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords?. Mutation Research - Reviews in Mutation Research, 2020, 783, 108296.	2.4	36
56	A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-l´-lactone. Biomedical Engineering Letters, 2020, 10, 309-319.	2.1	53
57	Iron oxide/gold nanoparticlesâ€decorated reduced graphene oxide nanohybrid as the thermoâ€radiotherapy agent. IET Nanobiotechnology, 2020, 14, 428-432.	1.9	13
58	A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. Journal of Materials Research, 2020, 35, 430-441.	1.2	33
59	A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing?. Medicina (Lithuania), 2019, 55, 439.	0.8	87
60	Sciatic nerve regeneration by using collagen type I hydrogel containing naringin. Journal of Materials Science: Materials in Medicine, 2019, 30, 107.	1.7	40
61	Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chemico-Biological Interactions, 2019, 312, 108814.	1.7	98
62	Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. International Journal of Biological Macromolecules, 2019, 140, 1260-1268.	3.6	86
63	Evaluation of effective needleless electrospinning parameters controlling polyacrylonitrile nanofibers diameter via modeling artificial neural networks. Journal of the Textile Institute, 2019, 110, 477-486.	1.0	12
64	Recent advancements and new perspectives of phytonanotechnology. Comprehensive Analytical Chemistry, 2019, 84, 1-22.	0.7	3
65	Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering?. International Journal of Biological Macromolecules, 2019, 134, 673-694.	3.6	145
66	Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. Journal of Drug Delivery Science and Technology, 2019, 51, 204-213.	1.4	139
67	<i>In vitro</i> and <i>in vivo</i> evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 964-974.	1.9	98
68	Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose, 2018, 25, 1229-1238.	2.4	72
69	The promising potentials of capped gold nanoparticles for drug delivery systems. Journal of Drug Targeting, 2018, 26, 525-532.	2.1	44
70	Taurine-loaded poly (Îμ-caprolactone)/gelatin electrospun mat as a potential wound dressing material: In vitro and in vivo evaluation. Journal of Bioactive and Compatible Polymers, 2018, 33, 282-294.	0.8	60
71	In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. International Journal of Biological Macromolecules, 2018, 117, 601-609.	3.6	168
72	Crossâ€linking gold nanoparticles aggregation method based on localised surface plasmon resonance for quantitative detection of miRâ€155. IET Nanobiotechnology, 2018, 12, 453-458.	1.9	23

#	Article	IF	CITATIONS
73	Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Reports of Practical Oncology and Radiotherapy, 2018, 23, 462-473.	0.3	23
74	Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydrate Polymers, 2018, 198, 131-141.	5.1	239
75	Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2217-2229.	1.2	119
76	Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks. RSC Advances, 2016, 6, 111908-111918.	1.7	31
77	The Differentiation of Human Endometrial Stem Cells into Neuron-Like Cells on Electrospun PAN-Derived Carbon Nanofibers with Random and Aligned Topographies. Molecular Neurobiology, 2016, 53, 4798-4808.	1.9	52
78	Functionalization of PAN-Based Electrospun Carbon Nanofibers by Acid Oxidation: Study of Structural,Electrical and Mechanical Properties. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 930-937.	1.0	20
79	Parameters affecting carbon nanofiber electrodes for measurement of cathodic current in electrochemical sensors: an investigation using artificial neural network. RSC Advances, 2015, 5, 81243-81252.	1.7	37
80	Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Materials Science and Engineering C, 2015, 48, 673-678.	3.8	60
81	Preparation and characterization of kefiran electrospun nanofibers. International Journal of Biological Macromolecules, 2014, 70, 50-56.	3.6	45
82	Artificial neural networks modeling of electrospinning of polyethylene oxide from aqueous acid acetic solution. Journal of Applied Polymer Science, 2012, 125, 1910-1921.	1.3	22
83	Prediction of Nanofiber Diameter and Optimization of Electrospinning Process via Response Surface Methodology. Journal of Nanoscience and Nanotechnology, 2008, 8, 2509-2515.	0.9	25
84	Emulsifierâ€free miniemulsion polymerization of styrene using a cationic initiator. Journal of Applied Polymer Science, 2007, 106, 3515-3520.	1.3	8
85	Preparation of granular crosslinkable medium-density polyethylene. Journal of Applied Polymer Science, 2007, 104, 1873-1879.	1.3	12
86	Emulsifier-free miniemulsion polymerization of styrene and the investigation of encapsulation of nanoparticles with polystyrene via this procedure using an anionic initiator. Journal of Applied Polymer Science, 2007, 105, 1244-1250.	1.3	16
87	In situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through an electrospinning process. Journal of Applied Polymer Science, 2007, 105, 1351-1355.	1.3	31
88	Preparation of organic–inorganic nanocomposites with core-shell structure by inorganic powders. Journal of Applied Polymer Science, 2006, 99, 2943-2950.	1.3	16
89	Separation of ethylbenzene from C7+-cut naphtha. Journal of Applied Polymer Science, 2006, 102, 2795-2798.	1.3	0
90	Needleless Electrospinning System, an Efficient Platform to Fabricate Carbon Nanofibers. Journal of Nano Research, 0, 50, 78-89.	0.8	28

#	Article	IF	CITATIONS
91	In vitro and in vivo evaluation of porous alginate hydrogel containing retinoic acid for skin wound healing applications. Journal of Bioactive and Compatible Polymers, 0, , 088391152211040.	0.8	Ο