Monika Saumer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3581536/publications.pdf

Version: 2024-02-01

1040056 1125743 15 218 9 13 citations h-index g-index papers 15 15 15 338 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fabrication of micro-structured tools for the production of curved metal surfaces by pulsed electrochemical machining. International Journal of Advanced Manufacturing Technology, 2022, 119, 2825-2833.	3.0	2
2	Electrochemical Deposition of CoP and CoNiP as Hard Magnetic Scales in a Position Measurement System. Metals, 2022, 12, 235.	2.3	3
3	Surface states by grinding thin strips of electrochemically deposited nanocrystalline nickel-iron. Materialpruefung/Materials Testing, 2022, 64, 903-931.	2.2	1
4	Challenges and Opportunities of Tip-Enhanced Raman Spectroscopy in Liquids. Journal of Physical Chemistry C, 2021, 125, 21321-21340.	3.1	11
5	Biomimetic Nanostructures Fabricated by Nanoimprint Lithography for Improved Cellâ€Coupling. Advanced Functional Materials, 2020, 30, 2004227.	14.9	23
6	Poly(4-vinylaniline)/Polyaniline Bilayer-Functionalized Bacterial Cellulose for Flexible Electrochemical Biosensors. Langmuir, 2019, 35, 10354-10366.	3.5	32
7	Carbon Nanotube-Reinforced Poly(4-vinylaniline)/Polyaniline Bilayer-Grafted Bacterial Cellulose for Bioelectronic Applications. ACS Biomaterials Science and Engineering, 2019, 5, 2160-2172.	5.2	19
8	Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair. Materials Science and Engineering C, 2019, 102, 502-510.	7.3	32
9	3D Nanostructured Multielectrode Arrays: Fabrication, Electrochemical Characterization, and Evaluation of Cell–Electrode Adhesion. Advanced Materials Technologies, 2019, 4, 1800436.	5. 8	20
10	Poly(4-vinylaniline)/polyaniline bilayer functionalized bacterial cellulose membranes as bioelectronics interfaces. Carbohydrate Polymers, 2019, 204, 190-201.	10.2	21
11	Fabrication of a High Precision Magnetic Position Sensor Based on a Through Silicon Via First Approach. , 2018, , .		O
12	Microstructured Multilevel Bacterial Cellulose Allows the Guided Growth of Neural Stem Cells. Small, 2016, 12, 5407-5413.	10.0	38
13	Low coercivity NiFeMo thick films for wafer-level fabrication of magnetic microsensors. , 2016, , .		O
14	Nanocrystalline electroplated Ni <scp>F</scp> eâ€based alloys for integrated magnetic microsensors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 853-858.	1.8	11
15	Surface quality and biocompatibility of porous hydroxyapatite scaffolds for bone tissue engineering. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 957-963.	1.8	5