Shamsul Hayat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3581436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moringa oleifera Extract as a Natural Plant Biostimulant. Journal of Plant Growth Regulation, 2023, 42, 1291-1306.	2.8	22
2	Crosstalk Between Brassinosteroids and Nitric Oxide Regulates Plant Improvement During Abiotic Stress. , 2022, , 47-58.		1
3	Foliar Application of Copper Oxide Nanoparticles Increases the Photosynthetic Efficiency and Antioxidant Activity in Brassica juncea. Journal of Food Quality, 2022, 2022, 1-10.	1.4	14
4	Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. Plants, 2022, 11, 979.	1.6	51
5	Role of Micronutrients in Providing Abiotic Stress Tolerance. , 2022, , 115-136.		6
6	Transition Metal Homeostasis and Its Role in Plant Growth and Development. , 2022, , 159-178.		3
7	Zinc as a Versatile Element in Plants: An Overview on Its Uptake, Translocation, Assimilatory Roles, Deficiency and Toxicity Symptoms. , 2022, , 137-158.		2
8	Effects, uptake and translocation of iron (Fe) based nanoparticles in plants. , 2022, , 193-209.		3
9	Auxin regulates growth, photosynthetic efficiency and mitigates copper induced toxicity via modulation of nutrient status, sugar metabolism and antioxidant potential in Brassica juncea. Plant Physiology and Biochemistry, 2022, 185, 244-259.	2.8	14
10	Nitric Oxide-Mediated Enhancement in Photosynthetic Efficiency, Ion Uptake and Carbohydrate Metabolism that Boosts Overall Photosynthetic Machinery in Mustard Plants. Journal of Plant Growth Regulation, 2021, 40, 1088-1110.	2.8	14
11	Role of Zinc Oxide Nanoparticles in Countering Negative Effects Generated by Cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 2021, 40, 101-115.	2.8	82
12	Hydrogen sulfide: A versatile gaseous molecule in plants. Plant Physiology and Biochemistry, 2021, 158, 372-384.	2.8	62
13	Glucose escalates PSII activity, dynamics between anabolic and catabolic pathways, redox and elemental status to promote the growth of Brassica juncea. South African Journal of Botany, 2021, 137, 68-84.	1.2	3
14	Jasmonate: A Versatile Messenger in Plants. Signaling and Communication in Plants, 2021, , 129-158.	0.5	1
15	24-epibrassinolide in association with iron enhances the photosynthetic efficiency and upregulates the antioxidant system of the Brassica juncea. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	1
16	Zinc oxide nanoparticles and epibrassinolide enhanced growth of tomato via modulating antioxidant activity and photosynthetic performance. Biocell, 2021, 45, 1081-1093.	0.4	5
17	Glucose-induced response on photosynthetic efficiency, ROS homeostasis, and antioxidative defense system in maintaining carbohydrate and ion metabolism in Indian mustard (Brassica juncea L.) under salt-mediated oxidative stress. Protoplasma, 2021, 258, 601-620.	1.0	9
18	Nitric Oxide Mitigates the Salt-Induced Oxidative Damage in Mustard by UpRegulating the Activity of Various Enzymes. Journal of Plant Growth Regulation, 2021, 40, 2409-2432.	2.8	18

#	Article	IF	CITATIONS
19	Glucose modulates copper induced changes in photosynthesis, ion uptake, antioxidants and proline in Cucumis sativus plants. Carbohydrate Research, 2021, 501, 108271.	1.1	20
20	Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. BioMetals, 2021, 34, 737-759.	1.8	118
21	Editorial: An Update on Brassinosteroids: Homeostasis, Crosstalk, and Adaptation to Environmental Stress. Frontiers in Plant Science, 2021, 12, 673587.	1.7	2
22	Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicology and Environmental Safety, 2021, 213, 112020.	2.9	52
23	Nitric Oxide Alleviates Zinc Oxide Nanoparticles-Induced Phytotoxicity in Brassica juncea. Russian Journal of Plant Physiology, 2021, 68, 559-568.	0.5	2
24	Phytocannabinoids Biosynthesis in Angiosperms, Fungi, and Liverworts and Their Versatile Role. Plants, 2021, 10, 1307.	1.6	11
25	Zinc Oxide Nanoparticles to Fight the COVID-19. Acta Scientific Agriculture, 2021, 5, 14-16.	0.2	1
26	Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. Plant Physiology and Biochemistry, 2021, 166, 278-289.	2.8	34
27	Effect of Different Levels of Soil Applied Copper on the Morpho-physiological, Photochemical, and Antioxidant System of Brassica juncea. Journal of Soil Science and Plant Nutrition, 2021, 21, 3477-3492.	1.7	10
28	The role of quercetin in plants. Plant Physiology and Biochemistry, 2021, 166, 10-19.	2.8	181
29	Interplay Between Salicylates and Jasmonates Under Stress. , 2021, , 153-173.		1
30	Role of Chitosan Nanoparticles in Regulation of Plant Physiology Under Abiotic Stress. Sustainable Agriculture Reviews, 2021, , 399-413.	0.6	3
31	Zinc Oxide Nanoparticles Help to Enhance Plant Growth and Alleviate Abiotic Stress: A Review. Current Protein and Peptide Science, 2021, 22, 362-375.	0.7	14
32	Effective use of zinc oxide nanoparticles through root dipping on the performance of growth, quality, photosynthesis and antioxidant system in tomato. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 553-567.	0.9	31
33	Supplementation of Salicylic Acid and Citric Acid for Alleviation of Cadmium Toxicity to Brassica juncea. Journal of Plant Growth Regulation, 2020, 39, 641-655.	2.8	62
34	Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydrate Research, 2020, 487, 107884.	1.1	43
35	Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 2020, 156, 64-77.	2.8	438

Cadmium: A Threatening Agent for Plants. , 2020, , 59-88.

#	Article	IF	CITATIONS
37	Interaction of Auxin and Nitric Oxide Improved Photosynthetic Efficiency and Antioxidant System of Brassica juncea Plants Under Salt Stress. Journal of Plant Growth Regulation, 2020, , 1.	2.8	22
38	Melatonin modulates photosynthesis, redox status, and elemental composition to promote growth of Brassica juncea—a dose-dependent effect. Protoplasma, 2020, 257, 1685-1700.	1.0	35
39	Phytoremediation of Cadmium Contaminated Soil Using Brassica juncea: Influence on PSII Activity, Leaf Gaseous Exchange, Carbohydrate Metabolism, Redox and Elemental Status. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 411-421.	1.3	13
40	Foliar spray of Auxin/IAA modulates photosynthesis, elemental composition, ROS localization and antioxidant machinery to promote growth of Brassica juncea. Physiology and Molecular Biology of Plants, 2020, 26, 2503-2520.	1.4	45
41	Impact of Silver Nanoparticles on Plant Physiology: A Critical Review. Sustainable Agriculture Reviews, 2020, , 111-127.	0.6	13
42	Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis. Sustainable Agriculture Reviews, 2020, , 83-99.	0.6	56
43	Silicon Nanoparticles and Plants: Current Knowledge and Future Perspectives. Sustainable Agriculture Reviews, 2020, , 129-142.	0.6	68
44	Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany, 2020, 175, 104040.	2.0	119
45	Response of Titanium Nanoparticles to Plant Growth: Agricultural Perspectives. Sustainable Agriculture Reviews, 2020, , 101-110.	0.6	6
46	Role of strigolactones: Signalling and crosstalk with other phytohormones. Open Life Sciences, 2020, 15, 217-228.	0.6	41
47	Occurrence and Biosynthesis of Melatonin and Its Exogenous Effect on Plants. Acta Societatis Botanicorum Poloniae, 2020, 89, .	0.8	14
48	Effect of glucose on the morpho-physiology, photosynthetic efficiency, antioxidant system, and carbohydrate metabolism in Brassica juncea. Protoplasma, 2019, 256, 213-226.	1.0	18
49	Brassinosteroid Mediated Regulation of Photosynthesis in Plants. , 2019, , 185-217.		1
50	Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 2019, 289, 500-511.	4.2	72
51	Brassinosteroid Regulated Physiological Process: An Omics Perspective. , 2019, , 297-322.		3
52	Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 2019, 135, 385-394.	2.8	76
53	Interaction of glucose and phytohormone signaling in plants. Plant Physiology and Biochemistry, 2019, 135, 119-126.	2.8	53
54	Nanoparticles: biosynthesis, translocation and role in plant metabolism. IET Nanobiotechnology, 2019, 13, 345-352.	1.9	18

#	Article	IF	CITATIONS
55	Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	85
56	Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide - Biology and Chemistry, 2018, 73, 22-38.	1.2	132
57	Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 2018, 56, 678-686.	0.9	221
58	Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L Plant Physiology and Biochemistry, 2018, 129, 198-212.	2.8	58
59	24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South African Journal of Botany, 2018, 118, 120-128.	1.2	40
60	Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African Journal of Botany, 2017, 112, 391-398.	1.2	38
61	Foliar Spray of Proline Enhanced the Photosynthetic Efficiency and Antioxidant System in Brassica juncea. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 112-119.	0.5	4
62	Efficacy of brassinosteroid analogues in the mitigation of toxic effects of salt stress in Brassica juncea plants. Journal of Environmental Biology, 2017, 38, 27-36.	0.2	17
63	Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars?. Environmental Science and Pollution Research, 2016, 23, 13413-13423.	2.7	35
64	Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 2016, 109, 54-61.	2.8	432
65	Growth, photosynthesis, and antioxidant responses of Vigna unguiculata L. treated with hydrogen peroxide. Cogent Food and Agriculture, 2016, 2, .	0.6	7
66	Silicon elicited varied physiological and biochemical responses in Indian mustard (Brassica juncea): a concentration dependent study. Israel Journal of Plant Sciences, 2016, 63, 158-166.	0.3	7
67	Photosynthetic variation and yield attributes of two mustard varieties against cadmium phytotoxicity. Cogent Food and Agriculture, 2015, 1, 1106186.	0.6	7
68	Exogenous proline application enhances the efficiency of nitrogen fixation and assimilation in chickpea plants exposed to cadmium. Legume Research, 2015, , .	0.0	10
69	Effect of Salicylic Acid on the Growth, Photosynthetic Efficiency and Enzyme Activities of Leguminous Plant under Cadmium Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42, 440-445.	0.5	14
70	Regulation of Growth and Photosynthetic Parameters by Salicylic Acid and Calcium in Brassica juncea under Cadmium Stress. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2014, 69, 452-458.	0.6	8
71	DO brassinosteroids ameliorate freezing stress in <i>Cicer arietinum</i> . Legume Research, 2014, 37, 68.	0.0	1
72	Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 2014, 21, 125-131.	1.8	131

#	Article	IF	CITATIONS
73	Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat. International Journal of Biological Macromolecules, 2014, 64, 130-136.	3.6	40
74	Salicylic acid enhances the efficiency of nitrogen fixation and assimilation in <i>Cicer arietinum</i> plants grown under cadmium stress. Journal of Plant Interactions, 2014, 9, 35-42.	1.0	20
75	Effect of Salicylic Acid on the Growth, Photosynthetic Efficiency and Enzyme Activities of Leguminous Plant under Cadmium Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42, .	0.5	2
76	Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 2013, 20, 183-193.	1.8	74
77	Alleviation of Salinity Stress With Sodium Nitroprusside in Tomato. International Journal of Vegetable Science, 2013, 19, 164-176.	0.6	13
78	Salicylic Acid: Physiological Roles in Plants. , 2013, , 15-30.		27
79	Overlapping Horizons of Salicylic Acid under Different Stresses. , 2013, , 137-152.		1
80	Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 2013, 20, 1-10.	1.8	112
81	Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Botanica Croatica, 2013, 72, 323-335.	0.3	49
82	Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Botanica Brasilica, 2013, 27, 502-505.	0.8	21
83	Comparison of the Influence of 28-Homobrassinolide and 24-Epibrassinolide on Nitrate Reductase Activity, Proline Content, and Antioxidative Enzymes of Tomato. International Journal of Vegetable Science, 2012, 18, 161-170.	0.6	8
84	Role of proline under changing environments. Plant Signaling and Behavior, 2012, 7, 1456-1466.	1.2	1,868
85	Salicylic acids. Plant Signaling and Behavior, 2012, 7, 93-102.	1.2	21
86	Effects of herbicide applications in wheat fields. Plant Signaling and Behavior, 2012, 7, 570-575.	1.2	37
87	Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Horticulture Environment and Biotechnology, 2012, 53, 362-367.	0.7	52
88	Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi Journal of Biological Sciences, 2012, 19, 325-335.	1.8	114
89	Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant, Soil and Environment, 2012, 58, 417-423.	1.0	45
90	Physiological changes induced by chromium stress in plants: an overview. Protoplasma, 2012, 249, 599-611.	1.0	226

#	Article	IF	CITATIONS
91	Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L Plant Physiology and Biochemistry, 2012, 53, 61-68.	2.8	78
92	Response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to proline. Protoplasma, 2012, 249, 75-87.	1.0	16
93	Brassinosteroids: under biotic stress. , 2011, , 345-360.		4
94	Establishment of sensitive and resistant variety of tomato on the basis of photosynthesis and antioxidative enzymes in the presence of cobalt applied as shotgun approach. Brazilian Journal of Plant Physiology, 2011, 23, 175-185.	0.5	8
95	Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, 2011, 84, 1446-1451.	4.2	174
96	28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica, 2011, 49, 55-64.	0.9	102
97	Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica, 2011, 49, .	0.9	33
98	Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 1-17.	1.3	301
99	Protective Response of 28-Homobrassinolide in Cultivars of Triticum aestivum with Different Levels of Nickel. Archives of Environmental Contamination and Toxicology, 2011, 60, 68-76.	2.1	95
100	Screening of salt-tolerant genotypes ofBrassica junceabased on photosynthetic attributes. Journal of Plant Interactions, 2011, 6, 53-60.	1.0	38
101	Nitric Oxide Effects on Photosynthetic Rate, Growth, and Antioxidant Activity in Tomato. International Journal of Vegetable Science, 2011, 17, 333-348.	0.6	34
102	Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, 2011, 32, 667-85.	0.2	163
103	Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russian Journal of Plant Physiology, 2010, 57, 212-221.	0.5	41
104	Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma, 2010, 239, 3-14.	1.0	79
105	Physiological and biochemical changes in plants under waterlogging. Protoplasma, 2010, 241, 3-17.	1.0	154
106	Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 2010, 68, 14-25.	2.0	847
107	Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environmental and Experimental Botany, 2010, 69, 105-112.	2.0	195
108	Cobalt stress affects nitrogen metabolism, photosynthesis and antioxidant system in chickpea (<i>Cicer arietinum</i> L.). Journal of Plant Interactions, 2010, 5, 223-231.	1.0	25

#	Article	IF	CITATIONS
109	Screening of tomato (<i>Lycopersicon esculentum</i>) cultivars against cadmium through shotgun approach. Journal of Plant Interactions, 2009, 4, 187-201.	1.0	7
110	Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environmental and Experimental Botany, 2009, 66, 418-424.	2.0	121
111	Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L Acta Physiologiae Plantarum, 2009, 31, 889-897.	1.0	101
112	Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 2009, 47, 1-8.	2.8	754
113	Auxin Analogues and Nitrogen Metabolism, Photosynthesis, and Yield of Chickpea. Journal of Plant Nutrition, 2009, 32, 1469-1485.	0.9	21
114	Growth of Indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Brazilian Journal of Plant Physiology, 2009, 21, 187-195.	0.5	54
115	Effect of Salicylic Acid on Salinityâ€induced Changes in <i>Brassica juncea</i> . Journal of Integrative Plant Biology, 2008, 50, 1096-1102.	4.1	103
116	A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 2008, 62, 153-159.	2.0	247
117	Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 2008, 3, 297-304.	1.0	198
118	28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany, 2007, 59, 217-223.	2.0	150
119	Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 2007, 60, 33-41.	2.0	322
120	Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica, 2007, 45, 139-142.	0.9	110
121	Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae, 2006, 110, 267-273.	1.7	60
122	Responses of Vigna radiata to Foliar Application of 28-Homobrassinolide and Kinetin. Biologia Plantarum, 2004, 48, 465-468.	1.9	49
123	Salicylic Acid Influences Net Photosynthetic Rate, Carboxylation Efficiency, Nitrate Reductase Activity, and Seed Yield in Brassica juncea. Photosynthetica, 2003, 41, 281-284.	0.9	310
124	Photosynthetic Response of Vigna radiata to Pre-Sowing Seed Treatment with 28-Homobrassinolide. Photosynthetica, 2003, 41, 307-310.	0.9	42
125	Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Annals of Applied Biology, 2003, 143, 121-124.	1.3	41
126	Growth of wheat seedlings raised from the grains treated with 28-homobrassinolide. Acta Physiologiae Plantarum, 2001, 23, 27-30.	1.0	34

#	Article	IF	CITATIONS
127	Photosynthetic Efficiency of Plants of Brassica Juncea, Treated with Chlorosubstituted Auxins. Photosynthetica, 2001, 39, 565-568.	0.9	39
128	Carbonic Anhydrase, Photosynthesis, and Seed Yield in Mustard Plants Treated with Phytohormones. Photosynthetica, 2001, 39, 111-114.	0.9	62
129	Photosynthetic Rate, Growth, and Yield of Mustard Plants Sprayed with 28-Homobrassinolide. Photosynthetica, 2000, 38, 469-471.	0.9	72
130	Molecular Mechanisms Underpinning Colonization of a Plant by Plant Growth-Promoting Rhizobacteria. , 0, , 111-128.		1
131	Physicochemical Approaches to Studying Plant Growth Promoting Rhizobacteria. , O, , 19-40.		1
132	Posttranslational Modifications of Proteins by Nitric Oxide: A New Tool of Metabolome Regulation. , 0, , 189-201.		1
133	Electron Paramagnetic Resonance as a Tool to Study Nitric Oxide Generation in Plants. , 0, , 17-29.		2
134	Effective Plant Protection Weapons against Pathogens Require"NO Bullets― , 0, , 103-113.		0
135	Perspective of Melatonin-Mediated Stress Resilience and Cu Remediation Efficiency of Brassica juncea in Cu-Contaminated Soils. Frontiers in Plant Science, 0, 13, .	1.7	6