List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3580967/publications.pdf Version: 2024-02-01

FENC WANC

#	Article	IF	CITATIONS
1	Reversible lithium storage in sp2 hydrocarbon frameworks. Journal of Energy Chemistry, 2022, 66, 161-167.	12.9	1
2	Precisely visit the performance modulation of functionalized separator in Li-S batteries via consecutive multiscale analysis. Energy Storage Materials, 2022, 49, 85-92.	18.0	7
3	Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction. Nature Communications, 2022, 13, 2443.	12.8	25
4	Impact of Coordination Environment on Single-Atom-Embedded C ₃ N for Oxygen Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 7692-7701.	6.7	14
5	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie, 2021, 133, 1232-1239.	2.0	0
6	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie - International Edition, 2021, 60, 1212-1219.	13.8	8
7	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	18.0	11
8	Heterogeneous Formic Acid Production by Hydrogenation of CO ₂ Catalyzed by Irâ€bpy Embedded in Polyphenylene Porous Organic Polymers. ChemCatChem, 2021, 13, 1781-1786.	3.7	12
9	Progress and perspective of interface design in garnet electrolyteâ€based allâ€solidâ€state batteries. , 2021, 3, 385-409.		28
10	A Multiscale Xâ€Ray Tomography Study of the Cycledâ€Induced Degradation in Magnesium–Sulfur Batteries. Small Methods, 2021, 5, e2001193.	8.6	10
11	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO 2 Catalysts. Angewandte Chemie, 2021, 133, 14541-14549.	2.0	2
12	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14420-14428.	13.8	24
13	Evaluation and realization of safer Mg-S battery: The decisive role of the electrolyte. Nano Energy, 2021, 83, 105832.	16.0	10
14	Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. Small Science, 2021, 1, 2100032.	9.9	24
15	Frontispiz: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie, 2021, 133, .	2.0	0
16	Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability. ACS Applied Energy Materials, 2021, 4, 5840-5847.	5.1	9
17	Frontispiece: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
18	Surface Electron-Hole Rich Species Active in the Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 12524-12534.	13.7	62

#	Article	IF	CITATIONS
19	Fine structural changes of fluid catalytic catalysts and characterization of coke formed resulting from heavy oil devolatilization. Applied Catalysis B: Environmental, 2020, 263, 118329.	20.2	28
20	Characterization of water management in metal foam flow-field based polymer electrolyte fuel cells using in-operando neutron radiography. International Journal of Hydrogen Energy, 2020, 45, 2195-2205.	7.1	41
21	Insights into the mechanochemical synthesis of Sn-β: Solid-state metal incorporation in beta zeolite. Microporous and Mesoporous Materials, 2020, 309, 110566.	4.4	23
22	Enabling stable MnO ₂ matrix for aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 22075-22082.	10.3	101
23	Polyphenylene as an Active Support for Ru-Catalyzed Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Applied Materials & Interfaces, 2020, 12, 53712-53718.	8.0	5
24	Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society, 2020, 142, 14890-14902.	13.7	75
25	Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria. Nature Communications, 2020, 11, 4008.	12.8	95
26	Polyphenylene-Based Solid Acid as an Efficient Catalyst for Activation and Hydration of Alkynes. Chemistry of Materials, 2020, 32, 4375-4382.	6.7	8
27	In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnO cathode. Energy Storage Materials, 2020, 31, 164-171.	18.0	12
28	Selective catalytic oxidation of ammonia over nano Cu/zeolites with different topologies. Environmental Science: Nano, 2020, 7, 1399-1414.	4.3	24
29	Multi‣cale Investigations of Î′â€Ni _{0.25} V ₂ O ₅ ·nH ₂ O Cathode Materials in Aqueous Zincâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2000058.	19.5	173
30	Advanced Li ₂ S/Si Full Battery Enabled by TiN Polysulfide Immobilizer. Small, 2019, 15, e1902377.	10.0	29
31	The Direct Synthesis of H ₂ O ₂ Using TSâ€l Supported Catalysts. ChemCatChem, 2019, 11, 1673-1680.	3.7	42
32	Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. ACS Nano, 2019, 13, 2463-2472.	14.6	15
33	Methanation of Carbon Dioxide over Zeoliteâ€Encapsulated Nickel Nanoparticles. ChemCatChem, 2018, 10, 1566-1570.	3.7	69
34	Correlation between Mechanical Strength of Amorphous TiO ₂ Nanotubes and Their Solid State Crystallization Pathways. ChemistrySelect, 2018, 3, 10711-10716.	1.5	0
35	Phase and morphological control of MoO _{3â^{~,}x} nanostructures for efficient cancer theragnosis therapy. Nanoscale, 2017, 9, 11012-11016.	5.6	45
36	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	18.0	52

#	Article	IF	CITATIONS
37	In Situ EPR Study of the Redox Properties of CuO–CeO ₂ Catalysts for Preferential CO Oxidation (PROX). ACS Catalysis, 2016, 6, 3520-3530.	11.2	97
38	Pt ₃ Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene. Chemistry - A European Journal, 2014, 20, 1753-1759.	3.3	37
39	Platinum–cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nature Materials, 2014, 13, 293-300.	27.5	578
40	A Polyphenylene Support for Pd Catalysts with Exceptional Catalytic Activity. Angewandte Chemie - International Edition, 2014, 53, 8645-8648.	13.8	72
41	Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale, 2014, 6, 4345-4351.	5.6	139
42	Oxidation of Bioethanol using Zeoliteâ€Encapsulated Gold Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 12513-12516.	13.8	80
43	Anisotropic Overgrowth of Metal Heterostructures Induced by a Siteâ€Selective Silica Coating. Angewandte Chemie - International Edition, 2013, 52, 10344-10348.	13.8	139
44	In-Situ XAS Investigation of the Effect of Electrochemical Reactions on the Structure of Graphene in Aqueous Electrolytes. Journal of the Electrochemical Society, 2013, 160, C445-C450.	2.9	23
45	Metal Nanocrystalâ€Embedded Hollow Mesoporous TiO ₂ and ZrO ₂ Microspheres Prepared with Polystyrene Nanospheres as Carriers and Templates. Advanced Functional Materials, 2013, 23, 2137-2144.	14.9	112
46	Loading Metal Nanostructures on Cotton Fabrics as Recyclable Catalysts. Small, 2013, 9, 1003-1007.	10.0	29
47	Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2013, 135, 5588-5601.	13.7	597
48	Anisotropic Overgrowth of Metal Heterostructures Induced by a Siteâ€Selective Silica Coating. Angewandte Chemie, 2013, 125, 10534-10538.	2.0	21
49	Plasmonic Percolation: Plasmon-Manifested Dielectric-to-Metal Transition. ACS Nano, 2012, 6, 7162-7171.	14.6	89
50	Porous Singleâ€Crystalline Palladium Nanoparticles with High Catalytic Activities. Angewandte Chemie - International Edition, 2012, 51, 4872-4876.	13.8	206
51	Selective Heteroepitaxial Nanocrystal Growth of Rare Earth Fluorides on Sodium Chloride: Synthesis and Density Functional Calculations. Angewandte Chemie - International Edition, 2012, 51, 8796-8799.	13.8	28
52	Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society, 2011, 133, 1106-1111.	13.7	287
53	Tuning upconversion through energy migration in core–shell nanoparticles. Nature Materials, 2011, 10, 968-973.	27.5	1,570
54	Plasmon–molecule interactions. Nano Today, 2010, 5, 494-505.	11.9	193

#	Article	IF	CITATIONS
55	Heteroepitaxial Growth of Core–Shell and Core–Multishell Nanocrystals Composed of Palladium and Gold. Small, 2010, 6, 2566-2575.	10.0	94
56	Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society, 2009, 131, 16350-16351.	13.7	357
57	General Properties of Local Plasmons in Metal Nanostructures. Physical Review Letters, 2006, 97, 206806.	7.8	446