Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3580967/publications.pdf

Version: 2024-02-01

		172457	138484
57	6,382	29	58
papers	citations	h-index	g-index
63	63	63	10065
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tuning upconversion through energy migration in core–shell nanoparticles. Nature Materials, 2011, 10, 968-973.	27.5	1,570
2	Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2013, 135, 5588-5601.	13.7	597
3	Platinum–cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nature Materials, 2014, 13, 293-300.	27.5	578
4	General Properties of Local Plasmons in Metal Nanostructures. Physical Review Letters, 2006, 97, 206806.	7.8	446
5	Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society, 2009, 131, 16350-16351.	13.7	357
6	Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society, 2011, 133, 1106-1111.	13.7	287
7	Porous Singleâ€Crystalline Palladium Nanoparticles with High Catalytic Activities. Angewandte Chemie - International Edition, 2012, 51, 4872-4876.	13.8	206
8	Plasmon–molecule interactions. Nano Today, 2010, 5, 494-505.	11.9	193
9	Multiâ€Scale Investigations of δâ€Ni _{0.25} V ₂ O ₅ ·nH ₂ OCathode Materials in Aqueous Zincâ€on Batteries. Advanced Energy Materials, 2020, 10, 2000058.	19.5	173
10	Anisotropic Overgrowth of Metal Heterostructures Induced by a Siteâ€Selective Silica Coating. Angewandte Chemie - International Edition, 2013, 52, 10344-10348.	13.8	139
11	Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale, 2014, 6, 4345-4351.	5.6	139
12	Metal Nanocrystalâ€Embedded Hollow Mesoporous TiO ₂ and ZrO ₂ Microspheres Prepared with Polystyrene Nanospheres as Carriers and Templates. Advanced Functional Materials, 2013, 23, 2137-2144.	14.9	112
13	Enabling stable MnO ₂ matrix for aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 22075-22082.	10.3	101
14	In Situ EPR Study of the Redox Properties of CuO–CeO ₂ Catalysts for Preferential CO Oxidation (PROX). ACS Catalysis, 2016, 6, 3520-3530.	11.2	97
15	Adsorption and activation of molecular oxygen over atomic copper (I/II) site on ceria. Nature Communications, 2020, 11 , 4008.	12.8	95
16	Heteroepitaxial Growth of Core–Shell and Core–Multishell Nanocrystals Composed of Palladium and Gold. Small, 2010, 6, 2566-2575.	10.0	94
17	Plasmonic Percolation: Plasmon-Manifested Dielectric-to-Metal Transition. ACS Nano, 2012, 6, 7162-7171.	14.6	89
18	Oxidation of Bioethanol using Zeoliteâ€Encapsulated Gold Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 12513-12516.	13.8	80

#	Article	IF	CITATIONS
19	Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society, 2020, 142, 14890-14902.	13.7	75
20	A Polyphenylene Support for Pd Catalysts with Exceptional Catalytic Activity. Angewandte Chemie - International Edition, 2014, 53, 8645-8648.	13.8	72
21	Methanation of Carbon Dioxide over Zeoliteâ€Encapsulated Nickel Nanoparticles. ChemCatChem, 2018, 10, 1566-1570.	3.7	69
22	Surface Electron-Hole Rich Species Active in the Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 12524-12534.	13.7	62
23	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	18.0	52
24	Phase and morphological control of MoO _{3â^'x} nanostructures for efficient cancer theragnosis therapy. Nanoscale, 2017, 9, 11012-11016.	5.6	45
25	The Direct Synthesis of H ₂ O ₂ Using TS†Supported Catalysts. ChemCatChem, 2019, 11, 1673-1680.	3.7	42
26	Characterization of water management in metal foam flow-field based polymer electrolyte fuel cells using in-operando neutron radiography. International Journal of Hydrogen Energy, 2020, 45, 2195-2205.	7.1	41
27	Pt ₃ Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene. Chemistry - A European Journal, 2014, 20, 1753-1759.	3 . 3	37
28	Loading Metal Nanostructures on Cotton Fabrics as Recyclable Catalysts. Small, 2013, 9, 1003-1007.	10.0	29
29	Advanced Li ₂ S/Si Full Battery Enabled by TiN Polysulfide Immobilizer. Small, 2019, 15, e1902377.	10.0	29
30	Selective Heteroepitaxial Nanocrystal Growth of Rare Earth Fluorides on Sodium Chloride: Synthesis and Density Functional Calculations. Angewandte Chemie - International Edition, 2012, 51, 8796-8799.	13.8	28
31	Fine structural changes of fluid catalytic catalysts and characterization of coke formed resulting from heavy oil devolatilization. Applied Catalysis B: Environmental, 2020, 263, 118329.	20.2	28
32	Progress and perspective of interface design in garnet electrolyteâ€based allâ€solidâ€state batteries. , 2021, 3, 385-409.		28
33	Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction. Nature Communications, 2022, 13, 2443.	12.8	25
34	Selective catalytic oxidation of ammonia over nano Cu/zeolites with different topologies. Environmental Science: Nano, 2020, 7, 1399-1414.	4.3	24
35	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14420-14428.	13.8	24
36	Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. Small Science, 2021, 1, 2100032.	9.9	24

#	Article	IF	CITATIONS
37	In-Situ XAS Investigation of the Effect of Electrochemical Reactions on the Structure of Graphene in Aqueous Electrolytes. Journal of the Electrochemical Society, 2013, 160, C445-C450.	2.9	23
38	Insights into the mechanochemical synthesis of Sn- \hat{l}^2 : Solid-state metal incorporation in beta zeolite. Microporous and Mesoporous Materials, 2020, 309, 110566.	4.4	23
39	Anisotropic Overgrowth of Metal Heterostructures Induced by a Siteâ€Selective Silica Coating. Angewandte Chemie, 2013, 125, 10534-10538.	2.0	21
40	Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. ACS Nano, 2019, 13, 2463-2472.	14.6	15
41	Impact of Coordination Environment on Single-Atom-Embedded C ₃ N for Oxygen Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 7692-7701.	6.7	14
42	In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnO cathode. Energy Storage Materials, 2020, 31, 164-171.	18.0	12
43	Heterogeneous Formic Acid Production by Hydrogenation of CO ₂ Catalyzed by Irâ€bpy Embedded in Polyphenylene Porous Organic Polymers. ChemCatChem, 2021, 13, 1781-1786.	3.7	12
44	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	18.0	11
45	A Multiscale Xâ€Ray Tomography Study of the Cycledâ€Induced Degradation in Magnesium–Sulfur Batteries. Small Methods, 2021, 5, e2001193.	8.6	10
46	Evaluation and realization of safer Mg-S battery: The decisive role of the electrolyte. Nano Energy, 2021, 83, 105832.	16.0	10
47	Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability. ACS Applied Energy Materials, 2021, 4, 5840-5847.	5.1	9
48	Polyphenylene-Based Solid Acid as an Efficient Catalyst for Activation and Hydration of Alkynes. Chemistry of Materials, 2020, 32, 4375-4382.	6.7	8
49	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie - International Edition, 2021, 60, 1212-1219.	13.8	8
50	Precisely visit the performance modulation of functionalized separator in Li-S batteries via consecutive multiscale analysis. Energy Storage Materials, 2022, 49, 85-92.	18.0	7
51	Polyphenylene as an Active Support for Ru-Catalyzed Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53712-53718.	8.0	5
52	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO 2 Catalysts. Angewandte Chemie, 2021, 133, 14541-14549.	2.0	2
53	Frontispiece: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuOâ€CeO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
54	Reversible lithium storage in sp2 hydrocarbon frameworks. Journal of Energy Chemistry, 2022, 66, 161-167.	12.9	1

FENG WANG

#	Article	IF	CITATIONS
55	Correlation between Mechanical Strength of Amorphous TiO ₂ Nanotubes and Their Solid State Crystallization Pathways. ChemistrySelect, 2018, 3, 10711-10716.	1.5	O
56	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie, 2021, 133, 1232-1239.	2.0	0
57	Frontispiz: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuOâ€CeO ₂ Catalysts. Angewandte Chemie, 2021, 133, .	2.0	O