HÜseyİn Avci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3580769/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2293-E2302.	7.1	570
2	Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Analytical Chemistry, 2016, 88, 10019-10027.	6.5	181
3	Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science, 2017, 4, 1600522.	11.2	131
4	Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sensors and Actuators B: Chemical, 2018, 255, 100-109.	7.8	104
5	Tissue adhesives: From research to clinical translation. Nano Today, 2021, 36, 101049.	11.9	90
6	A Review of Cellulose and Cellulose Blends for Preparation of Bio-derived and Conventional Membranes, Nanostructured Thin Films, and Composites. Polymer Reviews, 2018, 58, 102-163.	10.9	67
7	Customizable Composite Fibers for Engineering Skeletal Muscle Models. ACS Biomaterials Science and Engineering, 2020, 6, 1112-1123.	5.2	29
8	Current Strategies for the Regeneration of Skeletal Muscle Tissue. International Journal of Molecular Sciences, 2021, 22, 5929.	4.1	29
9	Cell″aden composite suture threads for repairing damaged tendons. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1039-1048.	2.7	25
10	Characterization of degradation of polypropylene nonwovens irradiated by γâ€ r ay. Journal of Applied Polymer Science, 2014, 131, .	2.6	18
11	Synergistic effects of plant extracts and polymers on structural and antibacterial properties for wound healing. Polymer Bulletin, 2019, 76, 3709-3731.	3.3	17
12	Electrochemical-based â€~ã€~antibiotsensor'' for the whole-cell detection of the vancomycin-susceptible bacteria. Talanta, 2021, 234, 122695.	5.5	16
13	Biologically modified microelectrode sensors provide enhanced sensitivity for detection of nucleic acid sequences from Mycobacterium tuberculosis. Sensors and Actuators Reports, 2020, 2, 100008.	4.4	15
14	Fabrication of Nanopores in an Ultra-Thin Polyimide Membrane for Biomolecule Sensing. IEEE Sensors Journal, 2018, 18, 2641-2646.	4.7	13
15	Preparation of origanum minutiflorum oil-loaded core–shell structured chitosan nanofibers with tunable properties. Polymer Bulletin, 2018, 75, 4129-4144.	3.3	13
16	Flexible poly(styreneâ€ethyleneâ€butadieneâ€styrene) hybrid nanofibers for bioengineering and water filtration applications. Journal of Applied Polymer Science, 2020, 137, 49184.	2.6	13
17	Decellularized inner body membranes for tissue engineering: A review. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1287-1368.	3.5	13
18	High-performance filaments by melt spinning low viscosity nylon 6 using horizontal isothermal bath process. Polymer Engineering and Science, 2015, 55, 2457-2464.	3.1	11

ΗÜseyİΝ Ανςι

#	Article	IF	CITATIONS
19	Development of high-tenacity, high-modulus poly(ethylene terephthalate) filaments via a next generation wet-melt-spinning process. Polymer Engineering and Science, 2017, 57, 224-230.	3.1	10
20	Electrochemical Investigation of Gold Based Screen Printed Electrodes: An Application for a Seafood Toxin Detection. Electroanalysis, 2021, 33, 1033-1048.	2.9	9
21	Photophysical properties of phosphorescent elastomeric composite nanofibers. Dyes and Pigments, 2016, 125, 95-99.	3.7	8
22	Labelâ€free molecular detection of antibiotic susceptibility for Mycobacterium smegmatis using a low cost electrode format. Biotechnology and Applied Biochemistry, 2020, , .	3.1	8
23	Investigation of the Effect of Channel Structure and Flow Rate on On-Chip Bacterial Lysis. IEEE Transactions on Nanobioscience, 2021, 20, 86-91.	3.3	8
24	Onâ€chip labelâ€free impedanceâ€based detection of antibiotic permeation. IET Nanobiotechnology, 2021, 15, 100-106.	3.8	7
25	A fully integrated rapid on-chip antibiotic susceptibility test – A case study for Mycobacterium smegmatis. Sensors and Actuators A: Physical, 2022, 339, 113515.	4.1	7
26	Controlling of threadline dynamics via a novel method to develop ultra-high performance polypropylene filaments. Polymer Engineering and Science, 2015, 55, 327-339.	3.1	6
27	Impedance testing of porous Si3N4 scaffolds for skeletal implant applications. SN Applied Sciences, 2020, 2, 1.	2.9	5
28	Highly crystalline and oriented highâ€strength poly(ethylene terephthalate) fibers by using low molecular weight polymer. Journal of Applied Polymer Science, 2015, 132, .	2.6	4
29	Biosensors: Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes (Adv. Sci. 5/2017). Advanced Science, 2017, 4, .	11.2	3
30	Reversible Redox Activity by Ion-pH Dually Modulated Duplex Formation of i-Motif DNA with Complementary G-DNA. Nanomaterials, 2018, 8, 226.	4.1	3
31	Selfâ€ e ssembled fibrillar polyethylene crystals with tunable properties. Polymer Engineering and Science, 2020, 60, 2176-2189.	3.1	2
32	Determination of therapeutic agents efficiencies of microsatellite instability high colon cancer cells in postâ€metastatic liver biochip modeling. FASEB Journal, 2021, 35, e21834.	0.5	2
33	An electrochemical biosensor with integrated microheater to improve the sensitivity of electrochemical nucleic acid biosensors. Journal of Micromechanics and Microengineering, 2022, 32, 045008.	2.6	2
34	INVESTIGATION OF 3D CULTURE OF HUMAN ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELLS IN A MICROFLUIDIC PLATFORM. EskiÅŸehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 0, , .	0.8	1
35	DESIGN ALGINATE BASED BLENDS FOR LIVING COMPOSITE FIBERS TO PROMOTE WOUND HEALING. EskiÅŸehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 0, , .	0.8	0