
Giuseppe Pantaleo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3580600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity. Applied Catalysis B: Environmental, 2006, 66, 217-227.	10.8	419
2	Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catalysis Science and Technology, 2013, 3, 3085.	2.1	318
3	Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts. Journal of Physical Chemistry B, 2005, 109, 2821-2827.	1.2	272
4	Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Applied Catalysis A: General, 2008, 347, 81-88.	2.2	246
5	Activity of SiO2 supported gold-palladium catalysts in CO oxidation. Applied Catalysis A: General, 2003, 251, 359-368.	2.2	165
6	Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity. Catalysis Communications, 2005, 6, 329-336.	1.6	155
7	Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MO (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Applied Catalysis B: Environmental, 2014, 156-157, 350-361.	10.8	141
8	Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects. Applied Catalysis B: Environmental, 2016, 189, 233-241.	10.8	141
9	Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Applied Catalysis B: Environmental, 2011, 101, 629-637.	10.8	139
10	Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Applied Catalysis B: Environmental, 2007, 70, 314-322.	10.8	138
11	Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems. Catalysts, 2013, 3, 563-583.	1.6	137
12	Catalytic Removal of Toluene over Co3O4–CeO2 Mixed Oxide Catalysts: Comparison with Pt/Al2O3. Catalysis Letters, 2009, 127, 270-276.	1.4	127
13	CoOx catalysts supported on alumina and alumina-baria: influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions. Applied Catalysis A: General, 2003, 245, 167-177.	2.2	121
14	Gold catalysts supported on CeO2 and CeO2–Al2O3 for NOx reduction by CO. Applied Catalysis B: Environmental, 2006, 65, 101-109.	10.8	112
15	Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations. Applied Catalysis B: Environmental, 2004, 48, 133-149.	10.8	93
16	Effects of redox treatments on the structural composition of a ceria–zirconia oxide for application in the three-way catalysis. Applied Catalysis A: General, 2003, 240, 295-307.	2.2	87
17	Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catalysis Today, 2010, 158, 35-43.	2.2	82
18	NO reduction by CO in the presence of water over gold supported catalysts on CeO2-Al2O3 mixed support, prepared by mechanochemical activation. Applied Catalysis B: Environmental, 2007, 76, 107-114.	10.8	73

GIUSEPPE PANTALEO

#	Article	IF	CITATIONS
19	Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides (M = Ce, Ti, Fe, Mn). Catalysts, 2015, 5, 671-689.	1.6	71
20	Support effect on the catalytic performance of Au/Co3O4–CeO2 catalysts for CO and CH4 oxidation. Catalysis Today, 2008, 139, 174-179.	2.2	69
21	Chemical-physical properties of spinel CoMn ₂ O ₄ nano-powders and catalytic activity in the 2-propanol and toluene combustion: Effect of the preparation method. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2011. 46. 291-297.	0.9	69
22	Oxidation of CH4 over Pd supported on TiO2-doped SiO2: Effect of Ti(IV) loading and influence of SO2. Applied Catalysis B: Environmental, 2009, 88, 430-437.	10.8	68
23	Co ₃ O ₄ particles grown over nanocrystalline CeO ₂ : influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation. Catalysis Science and Technology, 2015, 5, 1888-1901.	2.1	63
24	Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catalysis Today, 2010, 158, 56-62.	2.2	59
25	Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS. Applied Catalysis B: Environmental, 2011, 106, 529-539.	10.8	55
26	A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO. International Journal of Hydrogen Energy, 2009, 34, 6505-6515.	3.8	54
27	Synthesis and support composition effects on CH4 partial oxidation over Ni–CeLa oxides. Applied Catalysis B: Environmental, 2015, 164, 135-143.	10.8	54
28	Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al2O3 and SiO2. Materials Chemistry and Physics, 2009, 114, 604-611.	2.0	53
29	Direct synthesis of methyl isobutyl ketone in gas-phase reaction over palladium-loaded hydroxyapatite. Journal of Catalysis, 2005, 232, 257-267.	3.1	52
30	Effect of Ti(IV) loading on CO oxidation activity of gold on TiO2 doped amorphous silica. Applied Catalysis A: General, 2006, 310, 114-121.	2.2	51
31	Pd and PdAu on mesoporous silica for methane oxidation: Effect of SO2. Journal of Catalysis, 2007, 251, 94-102.	3.1	47
32	Gold catalysts supported on Y-modified ceria for CO-free hydrogen production via PROX. Applied Catalysis B: Environmental, 2016, 188, 154-168.	10.8	47
33	Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane. Applied Catalysis A: General, 2013, 468, 250-259.	2.2	45
34	Structure of the Metal–Support Interface and Oxidation State of Gold Nanoparticles Supported on Ceria. Journal of Physical Chemistry C, 2012, 116, 2960-2966.	1.5	44
35	Structural and morphological investigation of a cobalt catalyst supported on alumina-baria: effects of redox treatments on the activity in the NO reduction by CO. Applied Catalysis B: Environmental, 2004, 52, 1-10.	10.8	43
36	Au/CeO2-SBA-15 catalysts for CO oxidation: Effect of ceria loading on physic-chemical properties and catalytic performances. Catalysis Today, 2012, 187, 10-19.	2.2	43

GIUSEPPE PANTALEO

#	Article	IF	CITATIONS
37	NO reduction by CO over gold catalysts supported on Fe-loaded ceria. Applied Catalysis B: Environmental, 2015, 174-175, 176-184.	10.8	43
38	In situ FT-IR investigation of the reduction of NO with CO over Au/CeO2-Al2O3 catalyst in the presence and absence of H2. Applied Catalysis B: Environmental, 2009, 88, 113-126.	10.8	42
39	The Effect of Citric Acid Concentration on the Properties of LaMnO3 as a Catalyst for Hydrocarbon Oxidation. Catalysts, 2019, 9, 226.	1.6	40
40	NO reduction by CO over gold based on ceria, doped by rare earth metals. Catalysis Today, 2008, 139, 168-173.	2.2	39
41	Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of preparation method and nature of dopant. Catalysis Today, 2010, 158, 44-55.	2.2	39
42	A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids. Journal of Alloys and Compounds, 2016, 664, 428-438.	2.8	39
43	Alumina supported Pt(1%)/Ce0.6Zr0.4O2 monolith: Remarkable stabilization of ceria–zirconia solution towards CeAlO3 formation operated by Pt under redox conditions. Applied Catalysis B: Environmental, 2009, 90, 470-477.	10.8	35
44	Co/SiO2 catalysts for Fischer–Tropsch synthesis; effect of Co loading and support modification by TiO2. Catalysis Today, 2012, 197, 18-23.	2.2	35
45	Oxidative degradation properties of Co-based catalysts in the presence of ozone. Applied Catalysis B: Environmental, 2007, 75, 281-289.	10.8	34
46	Strong impact of indium promoter on Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts used in dry reforming of methane. Applied Catalysis A: General, 2021, 621, 118174.	2.2	34
47	Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of water and CO2. Catalysis Today, 2011, 175, 411-419.	2.2	33
48	WO3–V2O5 Active Oxides for NOx SCR by NH3: Preparation Methods, Catalysts' Composition, and Deactivation Mechanism—A Review. Catalysts, 2019, 9, 527.	1.6	32
49	Chromia on silica and zirconia oxides as recyclable oxidizing system: structural and surface characterization of the active chromium species for oxidation reaction. Catalysis Today, 2004, 91-92, 231-236.	2.2	31
50	Supported Au catalysts for propene total oxidation: Study of support morphology and gold particle size effects. Catalysis Today, 2011, 176, 7-13.	2.2	30
51	Metalâ^'Support Interaction and Redox Behavior of Pt(1 wt %)/Ce0.6Zr0.4O2. Journal of Physical Chemistry B, 2006, 110, 8731-8739.	1.2	29
52	Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts for methane combustion. Chemical Communications, 2010, 46, 6317.	2.2	29
53	Combined effect of noble metals (Pd, Au) and support properties on HDS activity of Co/SiO2 catalysts. Applied Catalysis A: General, 2009, 353, 296-304.	2.2	28
54	Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs). Catalysts, 2013, 3, 774-793.	1.6	28

#	Article	IF	CITATIONS
55	Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst: Effects of high reaction temperature and SO2 exposure on the deactivation process. Applied Catalysis B: Environmental, 2007, 75, 182-188.	10.8	27
56	Nature of cobalt active species in hydrodesulfurization catalysts: Combined support and preparation method effects. Journal of Molecular Catalysis A, 2007, 271, 238-245.	4.8	27
57	Alumina supported Au/Y-doped ceria catalysts for pure hydrogen production via PROX. International Journal of Hydrogen Energy, 2019, 44, 233-245.	3.8	27
58	Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions abatement: Effect of low Pd–Pt content on the catalytic activity. Catalysis Communications, 2007, 8, 299-304.	1.6	25
59	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 28, 119-132.	1.1	24
60	Nano-gold catalysts on Fe-modified ceria for pure hydrogen production via WGS and PROX: Effect of preparation method and Fe-doping on the structural and catalytic properties. Applied Catalysis A: General, 2013, 467, 76-90.	2.2	24
61	Structural evolution of Pt/ceria–zirconia TWC catalysts during the oxidation of carbon monoxide. Journal of Solid State Chemistry, 2004, 177, 1268-1275.	1.4	22
62	CO ₂ Reforming of CH ₄ over SiO ₂ -Supported Ni Catalyst: Effect of Sn as Support and Metal Promoter. Industrial & Engineering Chemistry Research, 2021, 60, 18684-18694.	1.8	18
63	Pd/Co3O4 catalyst for CH4 emissions abatement: study of SO2 poisoning effect. Topics in Catalysis, 2007, 42-43, 425-428.	1.3	17
64	NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+ (Me=Al or lanthanides): Effect of water in the feed gas. Applied Catalysis B: Environmental, 2009, 90, 286-294.	10.8	17
65	Time-resolved X-ray powder diffraction on a three-way catalyst at the GILDA beamline. Journal of Synchrotron Radiation, 2003, 10, 177-182.	1.0	16
66	Effects of Synthesis on the Structural Properties and Methane Partial Oxidation Activity of Ni/CeO2 Catalyst. Catalysts, 2018, 8, 220.	1.6	16
67	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 235-240.	1.1	15
68	Nano-Structured Gold Catalysts Supported on CeO2 and CeO2-Al2O3 for NOx Reduction by CO: Effect of Catalyst Pretreatment and Feed Composition. Journal of Nanoscience and Nanotechnology, 2008, 8, 867-873.	0.9	15
69	Effect of Y Modified Ceria Support in Mono and Bimetallic Pd–Au Catalysts for Complete Benzene Oxidation. Catalysts, 2018, 8, 283.	1.6	14
70	A new cell for the study ofin situchemical reactions using X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2005, 12, 499-505.	1.0	13
71	Structural insight in TiO2 supported CoFe catalysts for Fischer–Tropsch synthesis at ambient pressure. Applied Catalysis A: General, 2020, 600, 117621.	2.2	13
72	Novel transformations amongst mesostructured VPO phases synthesized through surfactant assisted organization from an exfoliated solution of VOPO4·2H2O. Microporous and Mesoporous Materials, 2010, 128, 213-222.	2.2	12

GIUSEPPE PANTALEO

#	Article	IF	CITATIONS
73	Plain and CeO2 – Supported LaxNiOy catalysts for partial oxidation of CH4. Catalysis Today, 2018, 307, 189-196.	2.2	11
74	Insights into SO2 Interaction with Pd/Co3O4–CeO2 Catalysts for Methane Oxidation. Topics in Catalysis, 2009, 52, 1989-1994.	1.3	9
75	Pd (1Âwt%)/LaMn0.4Fe0.6O3 Catalysts Supported Over Silica SBA-15: Effect of Perovskite Loading and Support Morphology on Methane Oxidation Activity and SO2 Tolerance. Topics in Catalysis, 2012, 55, 782-791.	1.3	9
76	CO2 reforming of CH4 over Ni supported on SiO2 modified by TiO2 and ZrO2: Effect of the support synthesis procedure. Applied Catalysis A: General, 2022, 642, 118704.	2.2	8
77	Sustainable Recycling of Insoluble Rust Waste for the Synthesis of Iron-Containing Perovskite-Type Catalysts. ACS Omega, 2019, 4, 6994-7004.	1.6	7
78	Structural and morphological properties of Co–La catalysts supported on alumina/lanthana for hydrocarbon oxidation. Journal of Non-Crystalline Solids, 2004, 345-346, 620-623.	1.5	6
79	Alumina and Alumina–Baria Supported Cobalt Catalysts for DeNO x : Influence of the Support and Cobalt Content on the Catalytic Performance. Topics in Catalysis, 2009, 52, 1826-1831.	1.3	6
80	Application of Potassium Ion Deposition in Determining the Impact of Support Reducibility on Catalytic Activity of Au/Ceria-Zirconia Catalysts in CO Oxidation, NO Oxidation, and C3H8 Combustion. Catalysts, 2020, 10, 688.	1.6	6
81	Pure hydrogen production via PROX over gold catalysts supported on Pr-modified ceria. Fuel, 2014, 134, 628-635.	3.4	5
82	Reducibility Studies of Ceria, Ce0.85Zr0.15O2 (CZ) and Au/CZ Catalysts after Alkali Ion Doping: Impact on Activity in Oxidation of NO and CO. Catalysts, 2022, 12, 524.	1.6	4
83	Supported Co3O4-CeO2 monoliths: effect of preparation method and Pd-Pt promotion on the CO/CH4 oxidation activity. Studies in Surface Science and Catalysis, 2006, 162, 657-664.	1.5	3
84	Mesoporous SBA-15 silica modified with cerium oxide: Effect of ceria loading on support modification. Studies in Surface Science and Catalysis, 2010, , 401-404.	1.5	3
85	New active meso-porous titania foam as size limiter for metal nanoparticles. Journal of Alloys and Compounds, 2018, 735, 1611-1619.	2.8	3
86	Activity of Ag/CeZrO2, Ag+K/CeZrO2, and Ag-Au+K/CeZrO2 Systems for Lean Burn Exhaust Clean-Up. Catalysts, 2021, 11, 1041.	1.6	3
87	The Effect of Potassium on TiO2 Supported Bimetallic Cobalt–Iron Catalysts. Topics in Catalysis, 2020, 63, 1424-1433.	1.3	2
88	A Glutenâ€Free Biscuit Fortified with Lemon IntegroPectin. ChemistrySelect, 2022, 7, .	0.7	2
89	Investigation of Co3O4 and LaCoO3 Interaction by Performing N2O Decomposition Tests under Co3O4-CoO Transition Temperature. Catalysts, 2021, 11, 325.	1.6	1
90	CERIA-BASED CATALYSTS FOR AIR POLLUTION ABATEMENT. Catalytic Science Series, 2013, , 813-879.	0.6	0