Tali Sharir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3580435/publications.pdf

Version: 2024-02-01

		430874	345221
38	1,372	18	36
papers	citations	h-index	g-index
38	38	38	972
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: Analysis of the REFINE SPECT registry. Journal of Nuclear Cardiology, 2022, 29, 727-736.	2.1	11
2	Diagnostic safety of a machine learning-based automatic patient selection algorithm for stress-only myocardial perfusion SPECT. Journal of Nuclear Cardiology, 2022, 29, 2295-2307.	2.1	21
3	Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC: Cardiovascular Imaging, 2022, 15, 1091-1102.	5 . 3	44
4	Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovascular Research, 2022, 118, 2152-2164.	3.8	26
5	Comparison of diabetes to other prognostic predictors among patients referred for cardiac stress testing: A contemporary analysis from the REFINE SPECT Registry. Journal of Nuclear Cardiology, 2022, 29, 3003-3014.	2.1	6
6	Causes of cardiovascular and noncardiovascular death in the ISCHEMIA trial. American Heart Journal, 2022, 248, 72-83.	2.7	15
7	Prevalence and predictors of automatically quantified myocardial ischemia within a multicenter international registry. Journal of Nuclear Cardiology, 2022, 29, 3221-3232.	2.1	3
8	Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry. Computers in Biology and Medicine, 2022, 145, 105449.	7.0	14
9	Differences in Prognostic Value of Myocardial Perfusion Single-Photon Emission Computed Tomography Using High-Efficiency Solid-State Detector Between Men and Women in a Large International Multicenter Study. Circulation: Cardiovascular Imaging, 2022, 15, .	2.6	2
10	Machine learning to predict abnormal myocardial perfusion from pre-test features. Journal of Nuclear Cardiology, 2022, 29, 2393-2403.	2.1	7
11	Survival benefit of coronary revascularization after myocardial perfusion SPECT: The role of ischemia. Journal of Nuclear Cardiology, 2021, 28, 1676-1687.	2.1	11
12	Can myocardial perfusion imaging predict outcome in patients with angina and ischemia but no obstructive coronary artery disease (INOCA)?. Journal of Nuclear Cardiology, 2021, 28, 3038-3043.	2.1	1
13	Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. European Heart Journal Cardiovascular Imaging, 2021, 22, 705-714.	1.2	38
14	Can phase analysis of gated myocardial perfusion single-photon emission computed tomography predict adverse outcome in cardiac sarcoidosis?. Journal of Nuclear Cardiology, 2021, 28, 137-139.	2.1	1
15	Quantitation of Poststress Change in Ventricular Morphology Improves Risk Stratification. Journal of Nuclear Medicine, 2021, 62, 1582-1590.	5.0	7
16	Impact of Early Revascularization on Major Adverse Cardiovascular Events inÂRelation to Automatically QuantifiedÂlschemia. JACC: Cardiovascular Imaging, 2021, 14, 644-653.	5. 3	28
17	Prognostic Value of Phase Analysis for Predicting Adverse Cardiac Events Beyond Conventional Single-Photon Emission Computed Tomography Variables: Results From the REFINE SPECT Registry. Circulation: Cardiovascular Imaging, 2021, 14, e012386.	2.6	13
18	Upper reference limits of transient ischemic dilation ratio for different protocols on new-generation cadmium zinc telluride cameras: A report from REFINE SPECT registry. Journal of Nuclear Cardiology, 2020, 27, 1180-1189.	2.1	17

#	Article	IF	CITATIONS
19	Myocardial blood flow assessment with SPECT systems: The renovation continues. Journal of Nuclear Cardiology, 2020, 27, 2303-2305.	2.1	0
20	Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). Journal of Nuclear Cardiology, 2020, 27, 1010-1021.	2.1	74
21	5-Year Prognostic Value of QuantitativeÂVersus Visual MPI in SubtleÂPerfusionÂDefects. JACC: Cardiovascular Imaging, 2020, 13, 774-785.	5.3	70
22	Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 549-559.	1,2	70
23	Myocardial Ischemic Burden and Differences in Prognosis Among Patients With and Without Diabetes: Results From the Multicenter International REFINE SPECT Registry. Diabetes Care, 2020, 43, 453-459.	8.6	21
24	Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 567-575.	1.2	21
25	Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study. Journal of Nuclear Medicine, 2019, 60, 664-670.	5.0	113
26	Advances in imaging instrumentation for nuclear cardiology. Journal of Nuclear Cardiology, 2019, 26, 543-556.	2.1	17
27	What is the value of motion and thickening in gated myocardial perfusion SPECT?. Journal of Nuclear Cardiology, 2018, 25, 754-757.	2.1	8
28	Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT. JACC: Cardiovascular Imaging, 2018, 11, 1654-1663.	5. 3	246
29	Absolute myocardial blood flow vs relative myocardial perfusion: Which one is better?. Journal of Nuclear Cardiology, 2018, 25, 1629-1632.	2.1	4
30	Transient ischemic dilation: An old but not obsolete marker of extensive coronary artery disease. Journal of Nuclear Cardiology, 2018, 25, 738-741.	2.1	5
31	Prognostic Value of Combined Clinical andÂMyocardial Perfusion Imaging Data Using Machine Learning. JACC: Cardiovascular Imaging, 2018, 11, 1000-1009.	5. 3	172
32	Dual-isotope myocardial perfusion SPECT imaging: Past, present, and future. Journal of Nuclear Cardiology, 2018, 25, 2024-2028.	2.1	5
33	Combined assessment of myocardial perfusion and left ventricular function by nuclear cardiology: The value of high-efficiency SPECT. Journal of Nuclear Cardiology, 2016, 23, 1262-1265.	2.1	2
34	Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: Automated quantification of one-day, stress-first SPECT using a CZT camera. Journal of Nuclear Cardiology, 2016, 23, 11-20.	2.1	43
35	Use of Electrocardiographic Depolarization Abnormalities for Detection of Stress-Induced Ischemia as Defined by Myocardial Perfusion Imaging. American Journal of Cardiology, 2012, 109, 642-650.	1.6	28
36	Solid-State SPECT technology: fast and furious. Journal of Nuclear Cardiology, 2010, 17, 890-896.	2.1	42

#	Article	IF	CITATIONS
37	Multicenter Trial of High-Speed Versus Conventional Single-Photon Emission Computed Tomography Imaging. Journal of the American College of Cardiology, 2010, 55, 1965-1974.	2.8	136
38	Evaluation of an attenuation correction method for thallium-201 myocardial perfusion tomographic imaging of patients with low likelihood of coronary artery disease. Journal of Nuclear Cardiology, 1998, 5, 369-377.	2.1	30