
Andreas Arkudas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The third dimension in perforator mapping—Comparison of Cinematic Rendering and maximum intensity projection in abdominal-based autologous breast reconstruction. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2022, 75, 536-543.	1.0	3
2	MyoBio: An Automated Bioreactor System Technology for Standardized Perfusion-Decellularization of Whole Skeletal Muscle. IEEE Transactions on Biomedical Engineering, 2022, 69, 2305-2313.	4.2	5
3	Intra- and Early Postoperative Evaluation of Malperfused Areas in an Irradiated Random Pattern Skin Flap Model Using Indocyanine Green Angiography and Near-Infrared Reflectance-Based Imaging and Infrared Thermography. Journal of Personalized Medicine, 2022, 12, 237.	2.5	15
4	A Personalized Approach to Treat Advanced Stage Severely Contracted Joints in Dupuytren's Disease with a Unique Skeletal Distraction Device—Utilizing Modern Imaging Tools to Enhance Safety for the Patient. Journal of Personalized Medicine, 2022, 12, 378.	2.5	5
5	Intraoperative Blood Flow Analysis of DIEP vs. ms-TRAM Flap Breast Reconstruction Combining Transit-Time Flowmetry and Microvascular Indocyanine Green Angiography. Journal of Personalized Medicine, 2022, 12, 482.	2.5	14
6	Microsurgical Transplantation of Pedicled Muscles in an Isolation Chamber—A Novel Approach to Engineering Muscle Constructs via Perfusion-Decellularization. Journal of Personalized Medicine, 2022, 12, 442.	2.5	4
7	Impact of Endothelial Progenitor Cells in the Vascularization of Osteogenic Scaffolds. Cells, 2022, 11, 926.	4.1	3
8	Influence of the autotaxin-lysophosphatidic acid axis on cellular function and cytokine expression in different breast cancer cell lines. Scientific Reports, 2022, 12, 5565.	3.3	9
9	Schwann Cells Promote Myogenic Differentiation of Myoblasts and Adipogenic Mesenchymal Stromal Cells on Poly-É-Caprolactone-Collagen I-Nanofibers. Cells, 2022, 11, 1436.	4.1	7
10	Improving the Safety of DIEP Flap Transplantation: Detailed Perforator Anatomy Study Using Preoperative CTA. Journal of Personalized Medicine, 2022, 12, 701.	2.5	9
11	Retrospective analysis of free temporoparietal fascial flap for defect reconstruction of the hand and the distal upper extremity. Archives of Orthopaedic and Trauma Surgery, 2021, 141, 165-171.	2.4	5
12	Human Umbilical Vein Endothelial Cell Support Bone Formation of Adipose-Derived Stem Cell-Loaded and 3D-Printed Osteogenic Matrices in the Arteriovenous Loop Model. Tissue Engineering - Part A, 2021, 27, 413-423.	3.1	18
13	Macromastia: an economic burden? A disease cost analysis based on real-world data in Germany. Archives of Gynecology and Obstetrics, 2021, 303, 521-531.	1.7	13
14	External Screw-Threaded Traction Device Helps Optimize Finger Joint Mobility in Severe Stage III and IV Dupuytren Disease. Medical Science Monitor, 2021, 27, e929814.	1.1	3
15	Is Reduction Mammoplasty Cost-Effective? A Cost-Utility Analysis of Surgical Treatment for Macromastia in Germany. Breast Care, 2021, 16, 1-9.	1.4	0
16	Novel imaging methods reveal positive impact of topical negative pressure application on tissue perfusion in an in vivo skin model. International Wound Journal, 2021, 18, 932-939.	2.9	12
17	Abdominal Panniculectomy Can Simplify Kidney Transplantation in Obese Patients. Urologia Internationalis, 2021, 105, 1068-1075.	1.3	2
18	Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model. Biofabrication, 2021, 13, 045003.	7.1	25

ANDREAS ARKUDAS

#	Article	IF	CITATIONS
19	Free Transplantation of a Tissue Engineered Bone Graft into an Irradiated, Critical-Size Femoral Defect in Rats. Cells, 2021, 10, 2256.	4.1	3
20	The Adipose-Derived Stem Cell and Endothelial Cell Coculture System—Role of Growth Factors?. Cells, 2021, 10, 2074.	4.1	8
21	Gelatin methacryloyl is a slow degrading material allowing vascularization and long-term use in vivo. Biomedical Materials (Bristol), 2021, 16, 065004.	3.3	32
22	Personalized Reconstruction of Genital Defects in Complicated Wounds with Vertical Rectus Abdominis Myocutaneous Flaps including Urethral Neo-Orifice. Journal of Personalized Medicine, 2021, 11, 1076.	2.5	9
23	Successful free flap salvage upon venous congestion in bilateral breast reconstruction using a venous crossâ€over bypass: A case report. Microsurgery, 2020, 40, 74-78.	1.3	9
24	Wound closure by means of free flap and arteriovenous loop: Development of flap autonomy in the longâ€ŧerm followâ€up. International Wound Journal, 2020, 17, 107-116.	2.9	21
25	The Role of Plastic Reconstructive Surgery in Surgical Therapy of Soft Tissue Sarcomas. Cancers, 2020, 12, 3534.	3.7	13
26	Bone tissue engineering using adiposeâ€derived stem cells and endothelial cells: Effects of the cell ratio. Journal of Cellular and Molecular Medicine, 2020, 24, 7034-7043.	3.6	18
27	Interdisciplinary Surgical Approaches in Vaginal and Perineal Reconstruction of Advanced Rectal and Anal Female Cancer Patients. Frontiers in Oncology, 2020, 10, 719.	2.8	11
28	Interdisciplinary Treatment of Breast Cancer After Mastectomy With Autologous Breast Reconstruction Using Abdominal Free Flaps in a University Teaching Hospital—A Standardized and Safe Procedure. Frontiers in Oncology, 2020, 10, 177.	2.8	7
29	Enhancing Safety in Reconstructive Microsurgery Using Intraoperative Indocyanine Green Angiography. Frontiers in Surgery, 2019, 6, 39.	1.4	49
30	Patient's quality of life after surgery and radiotherapy for extremity soft tissue sarcoma - a retrospective single-center study over ten years. Health and Quality of Life Outcomes, 2019, 17, 170.	2.4	12
31	Dermatofibrosarcoma protuberans: surgical management of a challenging mesenchymal tumor. World Journal of Surgical Oncology, 2019, 17, 90.	1.9	24
32	Indocyanine green angiography and the old question of vascular autonomy – Long term changes of microcirculation in microsurgically transplanted free flaps. Clinical Hemorheology and Microcirculation, 2019, 72, 421-430.	1.7	14
33	Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model. Tissue Engineering - Part A, 2019, 25, 1504-1513.	3.1	29
34	Autologous Breast Reconstruction with Transverse Rectus Abdominis Musculocutaneous (TRAM) or Deep Inferior Epigastric Perforator (DIEP) Flaps: An Analysis of the 100 Most Cited Articles. Medical Science Monitor, 2019, 25, 3520-3536.	1.1	11
35	Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds. Tissue Engineering - Part A, 2018, 24, 1320-1331.	3.1	23
36	Vascularization of the Arteriovenous Loop in a Rat Isolation Chamber Model—Quantification of Hypoxia and Evaluation of Its Effects. Tissue Engineering - Part A, 2018, 24, 719-728.	3.1	16

ANDREAS ARKUDAS

#	Article	IF	CITATIONS
37	Pedicled Transplantation of Axially Vascularized Bone Constructs in a Critical Size Femoral Defect. Tissue Engineering - Part A, 2018, 24, 479-492.	3.1	23
38	Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. BMC Biotechnology, 2018, 18, 75.	3.3	24
39	Encapsulation of Rat Bone Marrow Derived Mesenchymal Stem Cells in Alginate Dialdehyde/Gelatin Microbeads with and without Nanoscaled Bioactive Glass for In Vivo Bone Tissue Engineering. Materials, 2018, 11, 1880.	2.9	18
40	The Arteriovenous Loop: Engineering of Axially Vascularized Tissue. European Surgical Research, 2018, 59, 286-299.	1.3	38
41	Bacterial nanocellulose stimulates mesenchymal stem cell expansion and formation of stable collagen-I networks as a novel biomaterial in tissue engineering. Scientific Reports, 2018, 8, 9401.	3.3	35
42	Multiphoton microscopy analysis of extracellular collagen I network formation by mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2104-2115.	2.7	19
43	Influence of Different Irradiation Protocols on Vascularization and Bone Formation Parameters in Rat Femora. Tissue Engineering - Part C: Methods, 2017, 23, 583-591.	2.1	5
44	Cocultivation of Mesenchymal Stem Cells and Endothelial Progenitor Cells Reveals Antiapoptotic and Proangiogenic Effects. Cells Tissues Organs, 2017, 204, 218-227.	2.3	14
45	Vascular Tissue Engineering: Effects of Integrating Collagen into a PCL Based Nanofiber Material. BioMed Research International, 2017, 2017, 1-11.	1.9	44
46	Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E497-E509.	2.7	40
47	Reconstruction of Extensive Volar Finger Defects with Double Cross-Finger Flaps. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e693.	0.6	Ο
48	Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2016, 69, 1382-1388.	1.0	59
49	The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering. Journal of Visualized Experiments, 2016, , .	0.3	18
50	Assessing viability of extracorporeal preserved muscle transplants using external field stimulation: a novel tool to improve methods prolonging bridge-to-transplantation time. Scientific Reports, 2015, 5, 11956.	3.3	23
51	Is there a Rationale for Autologous Breast Reconstruction in Older Patients? A Retrospective Single Center Analysis of Quality of life, Complications and Comorbidities after DIEP or ms-TRAM Flap Using the BREAST-Q. Breast Journal, 2015, 21, 588-595.	1.0	31
52	Plastic and Reconstructive Surgery in the Treatment of Oncological Perineal and Genital Defects. Frontiers in Oncology, 2015, 5, 212.	2.8	29
53	Flow Increase Is Decisive to Initiate Angiogenesis in Veins Exposed to Altered Hemodynamics. PLoS ONE, 2015, 10, e0117407.	2.5	31
54	Combination of BMP2 and MSCs Significantly Increases Bone Formation in the Rat Arterio-Venous Loop Model. Tissue Engineering - Part A, 2015, 21, 96-105.	3.1	46

ANDREAS ARKUDAS

#	ARTICLE	IF	CITATIONS
55	PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnology, 2014, 14, 112.	3.3	53
56	In vitro and in vivo Biocompatibility of Alginate Dialdehyde/Gelatin Hydrogels with and without Nanoscaled Bioactive Glass for Bone Tissue Engineering Applications. Materials, 2014, 7, 1957-1974.	2.9	107
57	Successful human longâ€ŧerm application of <i>in situ</i> bone tissue engineering. Journal of Cellular and Molecular Medicine, 2014, 18, 1478-1485.	3.6	118
58	Engineering axially vascularized bone in the sheep arteriovenous-loop model. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 654-664.	2.7	64
59	Decision-making in DIEP and ms-TRAM flaps: The potential role for a combined laser Doppler spectrophotometry system. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2013, 66, 73-79.	1.0	23
60	Myogenic Differentiation of Mesenchymal Stem Cells in a Newly Developed Neurotised AV-Loop Model. BioMed Research International, 2013, 2013, 1-11.	1.9	32
61	Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagulation and Fibrinolysis, 2012, 23, 419-427.	1.0	17
62	Combination of Extrinsic and Intrinsic Pathways Significantly Accelerates Axial Vascularization of Bioartificial Tissues. Plastic and Reconstructive Surgery, 2012, 129, 55e-65e.	1.4	49
63	Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix. Journal of Cellular and Molecular Medicine, 2011, 15, 2452-2461.	3.6	41
64	Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 216-223.	2.7	76
65	Automatic Quantitative Micro-Computed Tomography Evaluation of Angiogenesis in an Axially Vascularized Tissue-Engineered Bone Construct. Tissue Engineering - Part C: Methods, 2010, 16, 1503-1514.	2.1	59
66	Dose-Finding Study of Fibrin Gel-Immobilized Vascular Endothelial Growth Factor 165 and Basic Fibroblast Growth Factor in the Arteriovenous Loop Rat Model. Tissue Engineering - Part A, 2009, 15, 2501-2511.	3.1	56
67	T17b murine embryonal endothelial progenitor cells can be induced towards both proliferation and differentiation in a fibrin matrix. Journal of Cellular and Molecular Medicine, 2009, 13, 926-935.	3.6	29
68	Intrinsic Axial Vascularization of an Osteoconductive Bone Matrix by Means of an Arteriovenous Vascular Bundle. Plastic and Reconstructive Surgery, 2007, 120, 855-868.	1.4	41