
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. International Journal of Heat and Mass Transfer, 2017, 104, 852-860.	2.5	193
2	Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison. Renewable Energy, 2018, 120, 350-364.	4.3	150
3	A review on development of ionic liquid based nanofluids and their heat transfer behavior. Renewable and Sustainable Energy Reviews, 2018, 91, 584-599.	8.2	127
4	Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. International Journal of Heat and Mass Transfer, 2018, 127, 450-457.	2.5	126
5	Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Solar Energy Materials and Solar Cells, 2018, 179, 118-128.	3.0	115
6	Analysis and forecasting of nonresidential electricity consumption in Romania. Applied Energy, 2010, 87, 3584-3590.	5.1	113
7	Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluidics and Nanofluidics, 2012, 13, 977-985.	1.0	79
8	Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: An experimental study. Journal of Molecular Liquids, 2018, 253, 188-196.	2.3	79
9	Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison. Renewable and Sustainable Energy Reviews, 2017, 71, 426-434.	8.2	71
10	A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids. Nanomaterials, 2019, 9, 1592.	1.9	68
11	Al2O3/TiO2 hybrid nanofluids thermal conductivity. Journal of Thermal Analysis and Calorimetry, 2019, 137, 583-592.	2.0	65
12	Experimental study on viscosity of stabilized Al 2 O 3 , TiO 2 nanofluids and their hybrid. Thermochimica Acta, 2018, 659, 203-212.	1.2	63
13	Rheology and thermal conductivity of non-porous silica (SiO 2) in viscous glycerol and ethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 2017, 88, 245-253.	2.9	57
14	Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids. International Journal of Heat and Mass Transfer, 2014, 68, 78-84.	2.5	54
15	Specific heat experimental tests of simple and hybrid oxide-water nanofluids: Proposing new correlation. Journal of Molecular Liquids, 2019, 279, 299-305.	2.3	51
16	NanoRound: A benchmark study on the numerical approach in nanofluids' simulation. International Communications in Heat and Mass Transfer, 2019, 108, 104292.	2.9	49
17	Experimental study on thermophysical properties of alumina nanoparticle enhanced ionic liquids. Journal of Molecular Liquids, 2019, 291, 111332.	2.3	45
18	Experimental and computational determination of heat transfer, entropy generation and pressure drop under turbulent flow in a tube with fly ash-Cu hybrid nanofluid. International Journal of Thermal Sciences, 2021, 167, 107016.	2.6	45

#	Article	IF	CITATIONS
19	Natural convection heat transfer utilizing ionic nanofluids with temperature-dependent thermophysical properties. Chemical Engineering Science, 2017, 174, 13-24.	1.9	43
20	A numerical study on ZnO based nanofluids behavior on natural convection. International Journal of Heat and Mass Transfer, 2017, 114, 286-296.	2.5	41
21	Overview of Ionic Liquids as Candidates for New Heat Transfer Fluids. International Journal of Thermophysics, 2020, 41, 1.	1.0	39
22	Numerical study on CNT nanofluids behavior in laminar pipe flow. Journal of Molecular Liquids, 2018, 271, 281-289.	2.3	37
23	Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review. Renewable and Sustainable Energy Reviews, 2022, 162, 112453.	8.2	36
24	Overview of Hybrid Nanofluids Development and Benefits. Journal of Engineering Thermophysics, 2018, 27, 507-514.	0.6	35
25	Ionanofluids with [C2mim][CH3SO3] ionic liquid and alumina nanoparticles: An experimental study on viscosity, specific heat and electrical conductivity. Chemical Engineering Science, 2021, 229, 116140.	1.9	35
26	A numerical approach in describing ionanofluids behavior in laminar and turbulent flow. Continuum Mechanics and Thermodynamics, 2018, 30, 657-666.	1.4	32
27	Electrical Conductivity of New Nanoparticle Enhanced Fluids: An Experimental Study. Nanomaterials, 2019, 9, 1228.	1.9	32
28	Viscosity and isobaric specific heat capacity of alumina nanoparticle enhanced ionic liquids: An experimental approach. Journal of Molecular Liquids, 2020, 317, 114020.	2.3	31
29	Studies on Al2O3, CuO, and TiO2 water-based nanofluids: A comparative approach in laminar and turbulent flow. Journal of Engineering Thermophysics, 2017, 26, 291-301.	0.6	29
30	State of the Art in PEG-Based Heat Transfer Fluids and Their Suspensions with Nanoparticles. Nanomaterials, 2021, 11, 86.	1.9	27
31	Ionic Liquids-Based Nanocolloids—A Review of Progress and Prospects in Convective Heat Transfer Applications. Nanomaterials, 2021, 11, 1039.	1.9	26
32	Comparative study of turbulent heat transfer of nanofluids. Journal of Thermal Analysis and Calorimetry, 2016, 124, 407-416.	2.0	25
33	Effect of microtube length on heat transfer enhancement of an water/Al2O3 nanofluid at high Reynolds numbers. International Journal of Heat and Mass Transfer, 2013, 62, 22-30.	2.5	22
34	A study on Brinkman number variation on water based nanofluid heat transfer in partially heated tubes. Mechanics Research Communications, 2016, 73, 7-11.	1.0	20
35	Simulation of Nanofluids Turbulent Forced Convection at High Reynolds Number: A Comparison Study of Thermophysical Properties Influence on Heat Transfer Enhancement. Flow, Turbulence and Combustion, 2015, 94, 555-575.	1.4	19
36	Pumping power and heat transfer efficiency evaluation on Al2O3, TiO2 and SiO2 single and hybrid water-based nanofluids for energy application. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1171-1181.	2.0	18

#	Article	IF	CITATIONS
37	Numerical studies on heat transfer enhancement and synergy analysis on few metal oxide water based nanofluids. International Journal of Heat and Mass Transfer, 2015, 89, 1207-1215.	2.5	17
38	Field-Synergy and Figure-of-Merit Analysis of Two Oxide–Water-Based Nanofluids' Flow in Heated Tubes. Heat Transfer Engineering, 2017, 38, 909-918.	1.2	17
39	Numerical studies on heat transfer enhancement in different closed enclosures heated symmetrically. Journal of Thermal Analysis and Calorimetry, 2015, 121, 711-720.	2.0	15
40	Numerical Simulation of Nanoparticles Concentration Effect on Forced Convection in a Tube With Nanofluids. Heat Transfer Engineering, 2015, 36, 1144-1153.	1.2	15
41	A complex evaluation of [C2mim][CH3SO3]– alumina nanoparticle enhanced ionic liquids internal laminar flow. International Journal of Heat and Mass Transfer, 2020, 154, 119674.	2.5	14
42	Thermal conductivity of stabilized PEG 400 based nanofluids: An experimental approach. International Communications in Heat and Mass Transfer, 2022, 130, 105798.	2.9	13
43	An Experimental Method to Decrease Heating Time in a Commercial Furnace. Experimental Heat Transfer, 2010, 23, 175-184.	2.3	12
44	Effect of ball milling on the thermal conductivity and viscosity of Indian coal fly ash nanofluid. Heat Transfer, 2020, 49, 4475-4490.	1.7	12
45	Experimental evaluation of electrical conductivity of ionanofluids based on water–[C2mim][CH3SO3] ionic liquids mixtures and alumina nanoparticles. Journal of Thermal Analysis and Calorimetry, 2021, 145, 3151-3157.	2.0	12
46	An Experimental Study on Electrical Conductivity of Several Oxide Nanoparticle Enhanced PEG 400 Fluid. International Journal of Thermophysics, 2021, 42, 1.	1.0	12
47	Improved thermophysical properties of Graphene Ionanofluid as heat transfer fluids for thermal applications. Journal of Ionic Liquids, 2022, 2, 100038.	1.0	12
48	An Analysis of the Electricity Sector in Romania. Energy Sources, Part B: Economics, Planning and Policy, 2014, 9, 149-155.	1.8	10
49	Experimental studies on several properties of PEG 400 and MWCNT nano-enhanced PEG 400 fluids. Journal of Molecular Liquids, 2022, 356, 119049.	2.3	10
50	Novel empirical correlation for ionanofluid PEC inside tube subjected to heat flux with application to solar energy. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1161-1170.	2.0	9
51	Viscosity and isobaric heat capacity of PEG 400-based phase change materials nano-enhanced with ZnO nanoparticles. Journal of Thermal Analysis and Calorimetry, 2022, 147, 8815-8826.	2.0	9
52	PEG 400-Based phase change materials Nano-Enhanced with Alumina: An experimental approach. AEJ - Alexandria Engineering Journal, 2022, 61, 6819-6830.	3.4	8
53	Simulation of heat transfer processes in an unconventional furnace. Journal of Engineering Thermophysics, 2010, 19, 31-38.	0.6	7
54	Thermal Conductivity Enhancement by Adding Nanoparticles to Ionic Liquids. Solid State Phenomena, 2017, 261, 121-126.	0.3	7

MINEA ALINA ADRIANA

#	Article	IF	CITATIONS
55	Ionanofluids natural convection heat transfer and entropy generation in a rectangular cavity: Viscosity influence. Journal of Molecular Liquids, 2021, 338, 116651.	2.3	7
56	Fire Properties of Acrylonitrile Butadiene Styrene Enhanced with Organic Montmorillonite and Exolit Fire Retardant. Applied Sciences (Switzerland), 2019, 9, 5433.	1.3	6
57	Nanoparticles in Ionic Liquids: Numerical Evaluation of Heat Transfer Behavior in Laminar Flow. Heat Transfer Engineering, 2020, , 1-10.	1.2	6
58	Electrical and Rheological Behavior Of Stabilized Al2O3 Nanofluids. Current Nanoscience, 2013, 9, 81-88.	0.7	5
59	Improvement of Properties of Aluminum Bronze CuAl ₇ Mn ₃ by Heat Treatments. Applied Mechanics and Materials, 2014, 657, 412-416.	0.2	4
60	Editor's Preface for the Special Issue on Nanoparticle-Enhanced Ionic Liquids. International Journal of Thermophysics, 2021, 42, 1.	1.0	4
61	Saving energy through improving convection in a muffle furnace. Thermal Science, 2008, 12, 121-125.	0.5	4
62	Numerical simulation and experimental validation of heat transfer enhancement on a loaded heat treatment furnace. Journal of Engineering Thermophysics, 2010, 19, 184-191.	0.6	3
63	Electrical and Rheological Behavior Of Stabilized Al2O3 Nanofluids. Current Nanoscience, 2013, 9, 81-88.	0.7	3
64	Barriers and challenges in hybrid nanofluids development and implementation. , 2020, , 255-280.		3
65	Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400. Nanomaterials, 2022, 12, 2344.	1.9	3
66	Influence of Microtube Heating Geometry on Behavior of an Alumina Nanofluid at Low Reynolds Numbers. Applied Mechanics and Materials, 0, 371, 596-600.	0.2	2
67	A review on analytical techniques for natural convection investigation in a heated closed enclosure: Case study. Thermal Science, 2015, 19, 1077-1095.	0.5	2
68	THE EFFECT OF MONTMORILLONITE CLAY AND FIRE RETARDANTS ON THE HEAT OF COMBUSTION OF RECYCLED ACRYLONITRILE-BUTADIENE STYRENE. Environmental Engineering and Management Journal, 2019, 18, 2387-2396.	0.2	2
69	A comparison study on experimental heat transfer enhancement on different furnaces enclosures. Heat and Mass Transfer, 2012, 48, 1837-1845.	1.2	1
70	Analytical Technique for Estimating the Termophysical Properties of Hybrid Nanofluids. Advanced Materials Research, 0, 1143, 207-213.	0.3	1
71	Numerical studies on nanoparticle stabilization in ionic liquid medium (IoNanofluids). , 2021, , 243-262.		1
72	A STUDY ON ENERGY CONSUMPTION IN ROMANIA. Environmental Engineering and Management Journal, 2010, 9, 581-587.	0.2	1

#	Article	IF	CITATIONS
73	ANALYTICAL APPROACH TO ESTIMATE THE AIR FLOW RATE IN THE BOUNDARY LAYER OF A HEATED FURNACE WALL. Environmental Engineering and Management Journal, 2008, 7, 329-335.	0.2	1
74	EXPERIMENTAL TECHNIQUE FOR SAVING ENERGY IN OVAL FURNACES. Environmental Engineering and Management Journal, 2009, 8, 463-468.	0.2	1
75	Experimental and theoretical investigation of stress variation in AlCu4Mg1 aluminum alloy. Surface Engineering and Applied Electrochemistry, 2008, 44, 335-338.	0.3	0
76	Experimental studies on radiation heat transfer enhancement on a standard muffle furnace. Thermal Science, 2013, 17, 591-598.	0.5	0
77	A Study on Uncertainties in Estimations of Thermal Conductivity of Alumina Nanofluids. Applied Mechanics and Materials, 2015, 809-810, 525-530.	0.2	0
78	Theoretical Considerations on Fibre Reinforced Composites Thermal Conductivity Uncertainties. Advanced Materials Research, 0, 1128, 171-177.	0.3	0
79	Studies on few Water Based Nanofluids Behavior at Heating. Advanced Materials Research, 2015, 1128, 384-389.	0.3	0
80	RESONANT TECHNIQUES AS NON-DESTRUCTIVE TECHNIQUES (NDT) APPLIED TO COMPOSITE MATERIALS: CASE STUDY ON LOW VELOCITY IMPACTS DETECTION. Environmental Engineering and Management Journal, 2015, 14, 1045-1052.	0.2	0
81	Development Of Ionic Liquid-Based Nanofluids. , 2018, , .		0