Emma C Slack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579761/publications.pdf Version: 2024-02-01

EMMA C SLACK

#	Article	IF	CITATIONS
1	Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunology, 2007, 8, 630-638.	14.5	1,070
2	Syk-Dependent Cytokine Induction by Dectin-1 Reveals a Novel Pattern Recognition Pathway for C Type Lectins. Immunity, 2005, 22, 507-517.	14.3	815
3	Intestinal Bacterial Colonization Induces Mutualistic Regulatory T Cell Responses. Immunity, 2011, 34, 794-806.	14.3	749
4	Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science, 2010, 328, 1705-1709.	12.6	657
5	Tollâ€like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α ⁺ DC correlates with unresponsiveness to imidazoquinolines. European Journal of Immunology, 2003, 33, 827-833.	2.9	517
6	Myeloid C-type lectins in innate immunity. Nature Immunology, 2006, 7, 1258-1265.	14.5	475
7	Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science, 2009, 325, 617-620.	12.6	443
8	The Liver May Act as a Firewall Mediating Mutualism Between the Host and Its Gut Commensal Microbiota. Science Translational Medicine, 2014, 6, 237ra66.	12.4	365
9	The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea. PLoS Pathogens, 2010, 6, e1001097.	4.7	314
10	High-avidity IgA protects the intestine by enchaining growing bacteria. Nature, 2017, 544, 498-502.	27.8	307
11	Memory CD8 + T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function. Immunity, 2016, 44, 1312-1324.	14.3	257
12	Mucispirillum schaedleri Antagonizes Salmonella Virulence to Protect Mice against Colitis. Cell Host and Microbe, 2019, 25, 681-694.e8.	11.0	205
13	Microbiota-Derived Compounds Drive Steady-State Granulopoiesis via MyD88/TICAM Signaling. Journal of Immunology, 2014, 193, 5273-5283.	0.8	202
14	Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science, 2019, 366, 881-886.	12.6	179
15	Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature, 2019, 573, 276-280.	27.8	169
16	Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. European Journal of Immunology, 2007, 37, 1600-1612.	2.9	161
17	Inflammation boosts bacteriophage transfer between <i>Salmonella</i> spp Science, 2017, 355, 1211-1215.	12.6	160
18	ATP-Gated Ionotropic P2X7 Receptor Controls Follicular T Helper Cell Numbers in Peyer's Patches to Promote Host-Microbiota Mutualism. Immunity, 2014, 41, 789-801.	14.3	152

EMMA C SLACK

#	Article	IF	CITATIONS
19	Cecum Lymph Node Dendritic Cells Harbor Slow-Growing Bacteria Phenotypically Tolerant to Antibiotic Treatment. PLoS Biology, 2014, 12, e1001793.	5.6	139
20	The functional interactions of commensal bacteria with intestinal secretory IgA. Current Opinion in Gastroenterology, 2007, 23, 673-678.	2.3	121
21	The habitat, double life, citizenship, and forgetfulness of IgA. Immunological Reviews, 2012, 245, 132-146.	6.0	105
22	The mucosal firewalls against commensal intestinal microbes. Seminars in Immunopathology, 2009, 31, 145-149.	6.1	95
23	Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nature Microbiology, 2019, 4, 2164-2174.	13.3	88
24	Functional Flexibility of Intestinal IgA – Broadening the Fine Line. Frontiers in Immunology, 2012, 3, 100.	4.8	86
25	Granulocytes Impose a Tight Bottleneck upon the Gut Luminal Pathogen Population during Salmonella Typhimurium Colitis. PLoS Pathogens, 2014, 10, e1004557.	4.7	73
26	Lymph Node Colonization Dynamics after Oral Salmonella Typhimurium Infection in Mice. PLoS Pathogens, 2013, 9, e1003532.	4.7	70
27	Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nature Protocols, 2016, 11, 1531-1553.	12.0	67
28	Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice. PLoS ONE, 2009, 4, e6472.	2.5	63
29	ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nature Communications, 2019, 10, 250.	12.8	63
30	Systemic antibody responses to gut commensal bacteria during chronic HIV-1 infection. Gut, 2011, 60, 1506-1519.	12.1	60
31	IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice. Blood, 2022, 139, 44-58.	1.4	51
32	Dendritic cell expression of the Notch ligand <i>jagged2</i> is not essential for Th2 response induction <i>in vivo</i> . European Journal of Immunology, 2008, 38, 1043-1049.	2.9	50
33	The antibody/microbiota interface in health and disease. Mucosal Immunology, 2020, 13, 3-11.	6.0	48
34	B cells as a critical node in the microbiota–host immune system network. Immunological Reviews, 2014, 260, 50-66.	6.0	47
35	Lymphotoxin β Receptor Signaling Promotes Development of Autoimmune Pancreatitis. Gastroenterology, 2012, 143, 1361-1374.	1.3	45
36	Promotion of liver regeneration by natural killer cells in a murine model is dependent on extracellular adenosine triphosphate phosphohydrolysis. Hepatology, 2013, 57, 1969-1979.	7.3	45

EMMA C SLACK

#	Article	IF	CITATIONS
37	NADPH Oxidase Deficient Mice Develop Colitis and Bacteremia upon Infection with Normally Avirulent, TTSS-1- and TTSS-2-Deficient Salmonella Typhimurium. PLoS ONE, 2013, 8, e77204.	2.5	44
38	Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species. Frontiers in Immunology, 2016, 7, 34.	4.8	39
39	Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology, 2020, 159, 52-62.	4.4	38
40	A Novel Phage Element of Salmonella enterica Serovar Enteritidis P125109 Contributes to Accelerated Type III Secretion System 2-Dependent Early Inflammation Kinetics in a Mouse Colitis Model. Infection and Immunity, 2012, 80, 3236-3246.	2.2	26
41	Live Attenuated S. Typhimurium Vaccine with Improved Safety in Immuno-Compromised Mice. PLoS ONE, 2012, 7, e45433.	2.5	25
42	A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nature Microbiology, 2021, 6, 830-841.	13.3	21
43	Enchained growth and cluster dislocation: A possible mechanism for microbiota homeostasis. PLoS Computational Biology, 2019, 15, e1006986.	3.2	20
44	Uncoupling of invasive bacterial mucosal immunogenicity from pathogenicity. Nature Communications, 2020, 11, 1978.	12.8	14
45	CD62L (L-Selectin) Shedding for Assessment of Perioperative Immune Sensitivity in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. PLoS ONE, 2013, 8, e53045.	2.5	6
46	Splicing defect of CD33 and inflammatory syndrome associated with occult bacterial infection. Journal of Allergy and Clinical Immunology, 2013, 132, 490-493.e2.	2.9	1
47	Why Is Measles Vaccination So Important?. Frontiers for Young Minds, 0, 7, .	0.8	0