Jingtao Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579626/publications.pdf Version: 2024-02-01

Ιινατλο Ηου

#	Article	IF	CITATIONS
1	Complexation mechanism of Pb2+ at the ferrihydrite-water interface: The role of Al-substitution. Chemosphere, 2022, 307, 135627.	4.2	6
2	Facet-dependent surface charge and Pb2+ adsorption characteristics of hematite nanoparticles: CD-MUSIC-eSGC modeling. Environmental Research, 2021, 196, 110383.	3.7	6
3	Insights into a "seesaw effect―between reducibility and hydrophobicity induced by cobalt doping: influence on OMS-2 nanomaterials for catalytic degradation of carcinogenic benzene. Environmental Science: Nano, 2021, 8, 3376-3386.	2.2	3
4	Insights into the underlying mechanisms of stability working for As(III) removal by Fe-Mn binary oxide as a highly efficient adsorbent. Water Research, 2021, 203, 117558.	5.3	27
5	Insights into the improving mechanism of defect-mediated As(V) adsorption on hematite nanoplates. Chemosphere, 2021, 280, 130597.	4.2	11
6	Peroxymonosulfate Improves the Activity and Stability of Manganese Oxide for Oxidation of Arsenite to Arsenate. Clean - Soil, Air, Water, 2020, 48, 1900195.	0.7	0
7	As(III) adsorption on Fe-Mn binary oxides: Are Fe and Mn oxides synergistic or antagonistic for arsenic removal?. Chemical Engineering Journal, 2020, 389, 124470.	6.6	98
8	Simultaneous introduction of K+ and Rb+ into OMS-2 tunnels as an available strategy for substantially increasing the catalytic activity for benzene elimination. Environmental Research, 2020, 191, 110146.	3.7	7
9	Enhanced catalytic activity of OMS-2 for carcinogenic benzene elimination by tuning Sr2+ contents in the tunnels. Journal of Hazardous Materials, 2020, 398, 122958.	6.5	15
10	The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation. Chemosphere, 2020, 250, 126211.	4.2	19
11	Ce ion substitution position effect on catalytic activity of OMS-2 for benzene oxidation. Materials Research Bulletin, 2019, 118, 110497.	2.7	17
12	Al-substitution-induced defect sites enhance adsorption of Pb ²⁺ on hematite. Environmental Science: Nano, 2019, 6, 1323-1331.	2.2	26
13	Formation and Morphology Evolution from Ferrihydrite to Hematite in the Presence of Tartaric Acid. ACS Earth and Space Chemistry, 2019, 3, 562-570.	1.2	9
14	Phosphate speciation on Al-substituted goethite: ATR-FTIR/2D-COS and CD-MUSIC modeling. Environmental Science: Nano, 2019, 6, 3625-3637.	2.2	25
15	Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel. Environmental Pollution, 2018, 238, 524-531.	3.7	11
16	Morphology-dependent enhancement of arsenite oxidation to arsenate on birnessite-type manganese oxide. Chemical Engineering Journal, 2017, 327, 235-243.	6.6	38
17	The remarkable effect of the coexisting arsenite and arsenate species ratios on arsenic removal by manganese oxide. Chemical Engineering Journal, 2017, 315, 159-166.	6.6	58
18	Tremendous effect of oxygen vacancy defects on the oxidation of arsenite to arsenate on cryptomelane-type manganese oxide. Chemical Engineering Journal, 2016, 306, 597-606.	6.6	43

JINGTAO HOU

#	Article	IF	CITATIONS
19	The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation. Nanoscale, 2014, 6, 15048-15058.	2.8	62
20	Tremendous Effect of the Morphology of Birnessite-Type Manganese Oxide Nanostructures on Catalytic Activity. ACS Applied Materials & amp; Interfaces, 2014, 6, 14981-14987.	4.0	175
21	Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. Journal of Materials Chemistry A, 2013, 1, 6736.	5.2	256
22	Tuning the K ⁺ Concentration in the Tunnel of OMS-2 Nanorods Leads to a Significant Enhancement of the Catalytic Activity for Benzene Oxidation. Environmental Science & Technology, 2013, 47, 13730-13736.	4.6	198