Jingtao Hou

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3579626/publications.pdf
Version: 2024-02-01

1 Complexation mechanism of $\mathrm{Pb} 2+$ at the ferrihydrite－water interface：The role of Al －substitution． 4.2
Chemosphere，2022，307， 135627. 6
Facet－dependent surface charge and $\mathrm{Pb} 2+$ adsorption characteristics of hematite nanoparticles： CD－MUSIC－eSGC modeling．Environmental Research，2021，196， 110383.
Insights into a â€œseesaw effectâ€•between reducibility and hydrophobicity induced by cobalt doping：
3 influence on OMS－2 nanomaterials for catalytic degradation of carcinogenic benzene．Environmental
$2.2 \quad 3$
Science：Nano，2021，8，3376－3386．
4 Insights into the underlying mechanisms of stability working for As （III）removal by Fe－Mn binary oxide
5.3 as a highly efficient adsorbent．Water Research，2021，203， 117558.
Insights into the improving mechanism of defect－mediated $A s(V)$ adsorption on hematite nanoplates．
Insights into the improving mechan
Chemosphere，2021，280，130597．
$4.2 \quad 11$
Peroxymonosulfate Improves the Activity and Stability of Manganese Oxide for Oxidation of Arsenite
$6 \quad \begin{aligned} & \text { Peroxymonosulfate Improves the Activity and Stability of } \\ & \text { to Arsenate．Clean－Soil，Air，Water，2020，48，} 1900195 .\end{aligned}$
$0.7 \quad 0$

7 | As（III）adsorption on Fe－Mn binary oxides：Are Fe and Mn oxides synergistic or antagonistic for arsenic |
| :--- |
| removal？．Chemical Engineering Journal，2020，389，124470． |

8 substantially increasing the catalytic activity for benzene elimination．Environmental Research，2020，
$\begin{array}{ll}3.7 & 7\end{array}$ 191， 110146.
9 Enhanced catalytic activity of OMS－2 for carcinogenic benzene elimination by tuning Sr2＋contents in
the tunnels．Journal of Hazardous Materials，2020，398， 122958.
$6.5 \quad 15$

The remarkable effect of alkali earth metal ion on the catalytic activity of OMS－2 for benzene
10 The remarkable effect of alkali earth metal ion
4.2

19

11 Ce ion substitution position effect on catalytic activity of OMS－2 for benzene oxidation．Materials
Research Bulletin，2019，118， 110497.
$2.7 \quad 17$

Al－substitution－induced defect sites enhance adsorption of Pb ＜sup＞2＋＜／sup＞on hematite．
12 Environmental Science：Nano，2019，6，1323－1331．
2.2

26

Formation and Morphology Evolution from Ferrihydrite to Hematite in the Presence of Tartaric Acid．
ACS Earth and Space Chemistry，2019，3，562－570．

Phosphate speciation on Al－substituted goethite：ATR－FTIR／2D－COS and CD－MUSIC modeling．
Environmental Science：Nano，2019，6，3625－3637．
2.2

25

Enhanced oxidation of arsenite to arsenate using tunable $K+$ concentration in the OMS－2 tunnel．
15 Environmental Pollution，2018，238，524－531．
3.7

11

Morphology－dependent enhancement of arsenite oxidation to arsenate on birnessite－type manganese
oxide．Chemical Engineering Journal，2017，327，235－243．
6.6

38

The remarkable effect of the coexisting arsenite and arsenate species ratios on arsenic removal by
manganese oxide．Chemical Engineering Journal，2017，315，159－166．
6.6

58

Tuning the K<sup>+<|sup> Concentration in the Tunnel of OMS-2 Nanorods Leads to a Significant

