Dunfeng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579580/publications.pdf

Version: 2024-02-01

		109137	1	61609
53	7,421	35		54
papers	citations	h-index		g-index
55	55	55		7096
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Asymmetric Oxoâ€Bridged ZnPb Bimetallic Electrocatalysis Boosting CO ₂ â€toâ€HCOOH Reduction. Advanced Science, 2022, 9, e2104138.	5.6	26
2	A Reconstructed Cu ₂ P ₂ O ₇ Catalyst for Selective CO ₂ Electroreduction to Multicarbon Products. Angewandte Chemie, 2022, 134, .	1.6	12
3	A Reconstructed Cu ₂ P ₂ O ₇ Catalyst for Selective CO ₂ Electroreduction to Multicarbon Products. Angewandte Chemie - International Edition, 2022, 61, e202114238.	7.2	71
4	In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100589.	3.2	41
5	Electrochemical synthesis of catalytic materials for energy catalysis. Chinese Journal of Catalysis, 2022, 43, 1001-1016.	6.9	23
6	In situ reconstruction of defect-rich SnO2 through an analogous disproportionation process for CO2 electroreduction. Chemical Engineering Journal, 2022, 446, 137444.	6.6	7
7	Structure Sensitivity in Single-Atom Catalysis toward CO ₂ Electroreduction. ACS Energy Letters, 2021, 6, 713-727.	8.8	149
8	Benzoic Anhydride as a Bifunctional Electrolyte Additive for Hydrogen Fluoride Capture and Robust Film Construction over Highâ€Voltage Liâ€Ion Batteries. ChemSusChem, 2021, 14, 2067-2075.	3.6	17
9	Nitrogen and Boron Coâ€Doped Carbon Spheres for Carbon Dioxide Electroreduction. ChemNanoMat, 2021, 7, 635-640.	1.5	10
10	Highâ€Rate CO ₂ Electroreduction to C ₂₊ Products over a Copperâ€Copper Iodide Catalyst. Angewandte Chemie - International Edition, 2021, 60, 14329-14333.	7.2	177
11	Highâ€Rate CO ₂ Electroreduction to C ₂₊ Products over a Copperâ€Copper Iodide Catalyst. Angewandte Chemie, 2021, 133, 14450-14454.	1.6	36
12	In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Coâ€Doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â°°} <i>_{í'}</i> Cathode for CO ₂ Electrolysis. Advanced Materials, 2020, 32, e1906193.	11.1	185
13	CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Science China Chemistry, 2020, 63, 1711-1715.	4.2	25
14	Enhancing CO 2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angewandte Chemie, 2020, 132, 22594-22599.	1.6	12
15	Enhancing CO ₂ Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angewandte Chemie - International Edition, 2020, 59, 22408-22413.	7.2	145
16	On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO ₂ . ACS Catalysis, 2020, 10, 11510-11518.	5.5	39
17	Self-assembled synthesis of waxberry-like open hollow NiCo2S4 with enhanced capacitance for high-performance hybrid asymmetric supercapacitors. Electrochimica Acta, 2020, 347, 136314.	2.6	38
18	Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide. Chinese Journal of Catalysis, 2020, 41, 1393-1400.	6.9	42

#	Article	IF	CITATIONS
19	Revealing the Active Phase of Copper during the Electroreduction of CO ₂ in Aqueous Electrolyte by Correlating <i>ln Situ</i> X-ray Spectroscopy and <i>ln Situ</i> Electron Microscopy. ACS Energy Letters, 2020, 5, 2106-2111.	8.8	84
20	In-situ synthesis of three-dimensionally flower-like Ni3V2O8@carbon nanotubes composite through self-assembling for high performance asymmetric supercapacitors. Journal of Power Sources, 2020, 455, 227985.	4.0	36
21	pH dependence of CO2 electroreduction selectivity over size-selected Au nanoparticles. Journal of Materials Science, 2020, 55, 13916-13926.	1.7	9
22	In Situ Reconstruction of a Hierarchical Snâ€Cu/SnO _{<i>x</i>} Core/Shell Catalyst for Highâ€Performance CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 4814-4821.	7.2	270
23	In Situ Reconstruction of a Hierarchical Snâ€Cu/SnO _{<i>x</i>} Core/Shell Catalyst for Highâ€Performance CO ₂ Electroreduction. Angewandte Chemie, 2020, 132, 4844-4851.	1.6	29
24	Designing Electrolyzers for Electrocatalytic CO ₂ Reduction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	15
25	Selective CO ₂ Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyteâ€Driven Nanostructuring. Angewandte Chemie, 2019, 131, 17203-17209.	1.6	43
26	Selective CO ₂ Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyteâ€Driven Nanostructuring. Angewandte Chemie - International Edition, 2019, 58, 17047-17053.	7.2	169
27	Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nature Catalysis, 2019, 2, 198-210.	16.1	927
28	<i>In situ</i>) exsolved FeNi Sr ₂ Fe _{1.5} Mo _{0.5} O _{6a^î} perovskite for efficient electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2019, 7, 11967-11975.	5.2	159
29	The Role of the Copper Oxidation State in the Electrocatalytic Reduction of CO ₂ into Valuable Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1485-1492.	3.2	121
30	Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO ₂ Electroreduction: Size and Support Effects. Angewandte Chemie - International Edition, 2018, 57, 6192-6197.	7.2	292
31	Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO ₂ Electroreduction: Size and Support Effects. Angewandte Chemie, 2018, 130, 6300-6305.	1.6	67
32	Pd-Containing Nanostructures for Electrochemical CO ₂ Reduction Reaction. ACS Catalysis, 2018, 8, 1510-1519.	5.5	261
33	Selective CO ₂ electroreduction over an oxide-derived gallium catalyst. Journal of Materials Chemistry A, 2018, 6, 19743-19749.	5. 2	22
34	Structure- and Electrolyte-Sensitivity in CO ₂ Electroreduction. Accounts of Chemical Research, 2018, 51, 2906-2917.	7.6	236
35	Activity and Selectivity Control in CO ₂ Electroreduction to Multicarbon Products over CuO _{<i>x</i>} Catalysts via Electrolyte Design. ACS Catalysis, 2018, 8, 10012-10020.	5.5	173
36	Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy, 2018, 52, 345-350.	8.2	121

#	Article	IF	CITATIONS
37	Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochemistry Communications, 2017, 76, 1-5.	2.3	32
38	Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols. ACS Nano, 2017, 11, 4825-4831.	7.3	372
39	Improved CO ₂ Electroreduction Performance on Plasma-Activated Cu Catalysts via Electrolyte Design: Halide Effect. ACS Catalysis, 2017, 7, 5112-5120.	5.5	233
40	Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Research, 2017, 10, 2181-2191.	5.8	208
41	Enhancing CO ₂ Electroreduction with the Metal–Oxide Interface. Journal of the American Chemical Society, 2017, 139, 5652-5655.	6.6	468
42	Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 39-44.	3.2	51
43	Electrochemical promotion of catalysis over Pd nanoparticles for CO ₂ reduction. Chemical Science, 2017, 8, 2569-2573.	3.7	72
44	Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. Electrochemistry Communications, 2016, 68, 67-70.	2.3	93
45	Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27, 35-43.	8.2	211
46	Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 2949-2954.	2.1	14
47	Size-Dependent Electrocatalytic Reduction of CO ₂ over Pd Nanoparticles. Journal of the American Chemical Society, 2015, 137, 4288-4291.	6.6	929
48	High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy, 2015, 13, 387-396.	8.2	311
49	pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochemistry Communications, 2015, 55, 1-5.	2.3	54
50	Ball-milling MoS 2 /carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium. Journal of Energy Chemistry, 2015, 24, 608-613.	7.1	20
51	Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. Journal of Energy Chemistry, 2014, 23, 694-700.	7.1	27
52	Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. Journal of Materials Chemistry A, 2014, 2, 20067-20074.	5.2	231
53	Revealing structure-selectivity correlations in pulsed CO2 electrolysis via time-resolved operando synchrotron X-ray studies. Nano Research, 0, , .	5.8	1