Ruth Schmidt-Ullrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579536/publications.pdf

Version: 2024-02-01

687363 940533 16 1,508 13 16 citations h-index g-index papers 16 16 16 2695 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reciprocal Requirements for EDA/EDAR/NF-κB and Wnt/β-Catenin Signaling Pathways in Hair Follicle Induction. Developmental Cell, 2009, 17, 49-61.	7.0	310
2	Requirement of NF-κB/Rel for the development of hair follicles and other epidermal appendices. Development (Cambridge), 2001, 128, 3843-3853.	2.5	187
3	Requirement of Nuclear Factor-κB in Angiotensin ll– and Isoproterenol-Induced Cardiac Hypertrophy In Vivo. Circulation, 2005, 111, 2319-2325.	1.6	169
4	NF-κB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development (Cambridge), 2006, 133, 1045-1057.	2.5	153
5	Proteasome-mediated degradation of $\hat{l^p}B\hat{l}_\pm$ and processing of p105 in Crohn disease and ulcerative colitis. Journal of Clinical Investigation, 2006, 116, 3195-3203.	8.2	146
6	Tubular Epithelial NF-κB Activity Regulates Ischemic AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 2658-2669.	6.1	138
7	Vascular Endothelial Cell–Specific NF-κB Suppression Attenuates Hypertension-Induced Renal Damage. Circulation Research, 2007, 101, 268-276.	4.5	128
8	LHX2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development (Cambridge), 2016, 143, 1512-22.	2.5	53
9	Central immune tolerance depends on crosstalk between the classical and alternative NF-κB pathways in medullary thymic epithelial cells. Journal of Autoimmunity, 2017, 81, 56-67.	6.5	51
10	NF-κB Activation Protects Oligodendrocytes against Inflammation. Journal of Neuroscience, 2017, 37, 9332-9344.	3.6	43
11	Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney International, 2019, 95, 108-122.	5.2	40
12	Transcriptional repression of <i>NFKBIA</i> triggers constitutive IKK―and proteasome―ndependent p65/RelA activation in senescence. EMBO Journal, 2021, 40, e104296.	7.8	34
13	NF-κB Participates in Mouse Hair Cycle Control and Plays Distinct Roles in the Various Pelage Hair Follicle Types. Journal of Investigative Dermatology, 2018, 138, 256-264.	0.7	23
14	Deficiency in <scp>lîºBî±</scp> in the intestinal epithelium leads to spontaneous inflammation and mediates apoptosis in the gut. Journal of Pathology, 2020, 251, 160-174.	4.5	14
15	NF-κB Activity Is Required for Anagen Maintenance in Human Hair Follicles In Vitro. Journal of Investigative Dermatology, 2014, 134, 2036-2038.	0.7	12
16	NF-κB determines Paneth versus goblet cell fate decision in the small intestine. Development (Cambridge), 2021, 148, .	2.5	7