Carl M Ã-berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3579049/publications.pdf

Version: 2024-02-01

759233 794594 34 461 12 19 citations h-index g-index papers 39 39 39 457 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High versus low ultrafiltration rates during experimental peritoneal dialysis in rats: Acute effects on plasma volume and systemic haemodynamics. Peritoneal Dialysis International, 2023, 43, 84-91.	2.3	1
2	Dual SGLT1/SGLT2 inhibitor phlorizin reduces glucose transport in experimental peritoneal dialysis. Peritoneal Dialysis International, 2023, 43, 145-150.	2.3	12
3	Optimised versus standard automated peritoneal dialysis regimens pilot study (OptiStAR): A randomised controlled crossover trial. Peritoneal Dialysis International, 2022, , 089686082110692.	2.3	4
4	ISPD recommendations for the evaluation of peritoneal membrane dysfunction in adults: Classification, measurement, interpretation and rationale for intervention. Peritoneal Dialysis International, 2021, 41, 352-372.	2.3	42
5	SGLT2 inhibition does not reduce glucose absorption during experimental peritoneal dialysis. Peritoneal Dialysis International, 2021, 41, 373-380.	2.3	21
6	Optimization of bimodal automated peritoneal dialysis prescription using the three-pore model. Peritoneal Dialysis International, 2021, 41, 381-393.	2.3	6
7	Clemizole and La 3+ salts ameliorate angiotensin Ilâ€induced glomerular hyperpermeability in vivo. Physiological Reports, 2021, 9, e14781.	1.7	1
8	Potential relationship between eGFR _{cystatin C} /eGFR _{creatinine} â€ratio and glomerular basement membrane thickness in diabetic kidney disease. Physiological Reports, 2021, 9, e14939.	1.7	15
9	Novel Method for Osmotic Conductance to Glucose in Peritoneal Dialysis. Kidney International Reports, 2020, 5, 1974-1981.	0.8	11
10	Optimized vs. Standard Automated Peritoneal Dialysis Regimens (OptiStAR): study protocol for a randomized controlled crossover trial. Pilot and Feasibility Studies, 2020, 6, 81.	1.2	3
11	Albumin infusion rate and plasma volume expansion: a randomized clinical trial in postoperative patients after major surgery. Critical Care, 2019, 23, 191.	5 . 8	26
12	Sustained, delayed, and small increments in glomerular permeability to macromolecules during systemic ET-1 infusion mediated via the ET _A receptor. American Journal of Physiology - Renal Physiology, 2019, 316, F1173-F1179.	2.7	4
13	Computer Simulations of Continuous Flow Peritoneal Dialysis Using the 3-Pore Model—A First Experience. Peritoneal Dialysis International, 2019, 39, 236-242.	2.3	7
14	Effect of diabetes mellitus on the recovery of changes in renal functions and glomerular permeability following reversible 24â€hour unilateral ureteral obstruction. Journal of Diabetes, 2019, 11, 674-683.	1.8	5
15	A distributed solute model: an extended two-pore model with application to the glomerular sieving of Ficoll. American Journal of Physiology - Renal Physiology, 2018, 314, F1108-F1116.	2.7	8
16	Inhibition of mammalian target of rapamycin decreases intrarenal oxygen availability and alters glomerular permeability. American Journal of Physiology - Renal Physiology, 2018, 314, F864-F872.	2.7	7
17	Mechanisms of Crystalloid versus Colloid Osmosis across the Peritoneal Membrane. Journal of the American Society of Nephrology: JASN, 2018, 29, 1875-1886.	6.1	47
18	Glomerular hyperpermeability after acute unilateral ureteral obstruction: effects of Tempol, NOS, RhoA, and Rac-1 inhibition. American Journal of Physiology - Renal Physiology, 2018, 315, F445-F453.	2.7	8

#	Article	IF	Citations
19	Is Adapted APD Theoretically More Efficient than Conventional APD?. Peritoneal Dialysis International, 2017, 37, 212-217.	2.3	20
20	Differential effects of gaseous versus injectable anesthetics on changes in regional cerebral blood flow and metabolism induced by I -DOPA in a rat model of Parkinson's disease. Experimental Neurology, 2017, 292, 113-124.	4.1	6
21	Optimizing Automated Peritoneal Dialysis Using an Extended 3-Pore Model. Kidney International Reports, 2017, 2, 943-951.	0.8	21
22	Nitric oxide synthase inhibition causes acute increases in glomerular permeability in vivo, dependent upon reactive oxygen species. American Journal of Physiology - Renal Physiology, 2016, 311, F984-F990.	2.7	13
23	The importance of albumin infusion rate for plasma volume expansion following major abdominal surgery $\hat{a}\in$ AIR: study protocol for a randomised controlled trial. Trials, 2016, 17, 578.	1.6	4
24	Albumin Turnover in Peritoneal and Hemodialysis. Seminars in Dialysis, 2016, 29, 458-462.	1.3	21
25	Swedish and English word ratings of imageability, familiarity and age of acquisition are highly correlated. Nordic Journal of Linguistics, 2015, 38, 351-364.	0.1	7
26	Reduced glomerular size selectivity in late streptozotocin-induced diabetes in rats: application of a distributed two-pore model. Physiological Reports, 2015, 3, e12397.	1.7	9
27	Letter to the Editor: "Can early plasma elimination rate be used to quantify renal clearance of macromolecules?― American Journal of Physiology - Renal Physiology, 2015, 308, F164-F165.	2.7	1
28	Counterpoint: Defending Pore Theory. Peritoneal Dialysis International, 2015, 35, 9-13.	2.3	13
29	Point-Counterpoint: Pores versus an Electrical Field. Peritoneal Dialysis International, 2015, 35, 236-236.	2.3	1
30	A distributed two-pore model: theoretical implications and practical application to the glomerular sieving of Ficoll. American Journal of Physiology - Renal Physiology, 2014, 306, F844-F854.	2.7	29
31	Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll. American Journal of Physiology - Renal Physiology, 2013, 304, F781-F787.	2.7	16
32	Plasma Volume Expansion by 0.9% NaCl During Sepsis/Systemic Inflammatory Response Syndrome, After Hemorrhage, and During a Normal State. Shock, 2013, 40, 59-64.	2.1	23
33	Rapid, dynamic changes in glomerular permeability to macromolecules during systemic angiotensin II (ANG II) infusion in rats. American Journal of Physiology - Renal Physiology, 2012, 303, F790-F799.	2.7	33
34	Size-selectivity of a synthetic high-flux and a high cut-off dialyzing membrane compared to that of the rat glomerular filtration barrier. Journal of Membrane Science, 2012, 413-414, 29-37.	8.2	13