
Jing-Bo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfimineâ€Promoted Fast O Transfer: One–step Synthesis of Sulfoximine from Sulfide. ChemistrySelect, 2017, 2, 1620-1624.	1.5	64
2	Studies on the novel pyridine sulfide containing SDH based heterocyclic amide fungicide. Pest Management Science, 2020, 76, 2368-2378.	3.4	57
3	Novel Anthranilic Diamide Scaffolds Containing N-Substituted Phenylpyrazole as Potential Ryanodine Receptor Activators. Journal of Agricultural and Food Chemistry, 2016, 64, 3697-3704.	5.2	39
4	Anthranilic diamides derivatives as potential ryanodine receptor modulators: Synthesis, biological evaluation and structure activity relationship. Bioorganic and Medicinal Chemistry, 2018, 26, 3541-3550.	3.0	22
5	Synthesis, insecticidal evaluation and 3Dâ€QSAR study of novel anthranilic diamide derivatives as potential ryanodine receptor modulators. Pest Management Science, 2019, 75, 1034-1044.	3.4	17
6	Synthesis, insecticidal evaluation and mode of action of novel anthranilic diamide derivatives containing sulfur moiety as potential ryanodine receptor activators. Bioorganic and Medicinal Chemistry, 2019, 27, 769-776.	3.0	15
7	Synthesis, Insecticidal Evaluation, and 3D-QASR of Novel Anthranilic Diamide Derivatives Containing <i>N</i> -Arylpyrrole as Potential Ryanodine Receptor Activators. Journal of Agricultural and Food Chemistry, 2020, 68, 9319-9328.	5.2	15
8	Design, synthesis and herbicidal activity study of aryl 2,6-disubstituted sulfonylureas as potent acetohydroxyacid synthase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3365-3369.	2.2	13
9	Discovery of a polysubstituted phenyl containing novel N-phenylpyrazole scaffold as potent ryanodine receptor activator. Bioorganic and Medicinal Chemistry, 2020, 28, 115829.	3.0	13
10	Research on controllable degradation of sulfonylurea herbicides. RSC Advances, 2016, 6, 23038-23047.	3.6	12
11	Design, Synthesis, Biological Evaluation and SARs of Novel Anthranilic Diamides Derivatives Containing Amide, Carbamate, Urea, and Thiourea Moieties. Chinese Journal of Chemistry, 2017, 35, 368-374.	4.9	12
12	Synthesis, biological activities, and SAR studies of novel 1-(2-chloro-4,5-difluorophenyl)-1H-pyrazole derivatives. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127535.	2.2	11
13	Synthesis and evaluation of novel N-(4′-arylpyrimidin-2′-yl) sulfonylurea derivatives as potential antifungal agents. Chemical Research in Chinese Universities, 2015, 31, 218-223.	2.6	10
14	Synthesis, insecticidal activities and SAR of novel phthalamides targeting calcium channel. Bioorganic and Medicinal Chemistry, 2014, 22, 6366-6379.	3.0	9
15	Design, synthesis and biological activities of novel anthranilic diamides containing dihydroisoxazoline and isoxazole. Chemical Research in Chinese Universities, 2016, 32, 41-48.	2.6	9
16	Design, Synthesis, Antifungal Activities and SARs of (<i>R</i>)â€2â€Arylâ€4,5â€dihydrothiazoleâ€4â€carboxylio Derivatives. Chinese Journal of Chemistry, 2015, 33, 1269-1275.	: Acid 4.9	7
17	Design, syntheses and biological activities of novel sulfonylureas containing an oxime ether moiety. Chemical Research in Chinese Universities, 2016, 32, 195-201.	2.6	5
18	Synthesis, biological activities and 3D-QSAR studies of (R)-2-phenyl-4,5-dihydrothiazole-4-carboxamide derivatives containing a sulfur ether moiety. Chinese Chemical Letters, 2019, 30, 668-671.	9.0	5

Jing-Bo Liu

#	Article	lF	CITATIONS
19	Design and Synthesis of Novel 3,4-Dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides-based Strobilurins as Potent Fungicide Candidates. Chemical Research in Chinese Universities, 2020, 36, 1190-1195.	2.6	4
20	Bioactivity-Guided Synthesis Accelerates the Discovery of Evodiamine Derivatives as Potent Insecticide Candidates. Journal of Agricultural and Food Chemistry, 2022, 70, 5197-5206.	5.2	4
21	Design, Synthesis, and Insecticidal Activities of Novel Pyranoside Derivatives Targeting at Potential Second Calcium Channel IP ₃ Receptor. Chinese Journal of Chemistry, 2016, 34, 1121-1128.	4.9	3
22	(R)-2-Phenyl-4,5-Dihydrothiazole-4-Carboxamide Derivatives Containing a Diacylhydrazine Group: Synthesis, Biological Evaluation, and SARs. Molecules, 2019, 24, 4440.	3.8	3
23	Synthesis, biological activities, and 3D-QSAR studies of (R)-2-phenyl-4,5-dihydrothiazole-4-carboxamide derivatives containing a sulfonohydrazide moiety. Medicinal Chemistry Research, 2020, 29, 495-503.	2.4	3
24	Design, synthesis and herbicidal activity of novel sulfonylureas containing tetrahydrophthalimide substructure. Chemical Research in Chinese Universities, 2016, 32, 396-401.	2.6	2
25	Design, synthesis and biological activities of novel 4,5-disubstituted-3-S-(Î2-D-acetylglycosyl)-1,2,4-triazole derivatives. Chemical Research in Chinese Universities, 2017, 33, 758-764.	2.6	2
26	Synthesis and Biological Evaluation of Novel Anthranilic Diamides Containing N-H/CH3-1H-Pyrazole. Chemical Research in Chinese Universities, 2020, 36, 829-834.	2.6	2
27	Discovery of evodiamine derivatives as potent insecticide candidates. Bioorganic and Medicinal Chemistry, 2022, 62, 116727.	3.0	1