Hai-Liang Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/357895/publications.pdf Version: 2024-02-01

HALLIANG SONG

#	Article	IF	CITATIONS
1	New insights into the role of molecular structures on the fate and behavior of antibiotics in an osmotic membrane bioreactor. Journal of Hazardous Materials, 2022, 423, 127040.	6.5	10
2	Application of a Molybdenum Carbide Electrode Enhanced the Biodegradability of Wheat Straw. Journal of Electronic Materials, 2022, 51, 163-171.	1.0	1
3	Effects of voltage on the emergence and spread of antibiotic resistance genes in microbial electrolysis cells: From mutation to horizontal gene transfer. Chemosphere, 2022, 291, 132703.	4.2	14
4	Quinones contained in wastewater as redox mediators for the synergistic removal of azo dye in microbial fuel cells. Journal of Environmental Management, 2022, 301, 113924.	3.8	9
5	The trade-off between nitrogen removal and current generation in an air-cathode bioelectrochemically assisted osmotic membrane bioreactor. Desalination, 2022, 526, 115518.	4.0	5
6	Increase of antibiotic resistance genes via horizontal transfer in single- and two-chamber microbial electrolysis cells. Environmental Science and Pollution Research, 2022, 29, 36216-36224.	2.7	2
7	Antibiotic removal and antibiotic resistance genes fate by regulating bioelectrochemical characteristics in microbial fuel cells. Bioresource Technology, 2022, 348, 126752.	4.8	15
8	Variation in the microbial community in bioelectrochemical systems treating sulfamethoxazole wastewater — Identifying key operating parameters and revealing sul gene-harboring host bacteria. Journal of Water Process Engineering, 2022, 46, 102572.	2.6	5
9	Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection. Journal of Hazardous Materials, 2022, 432, 128733.	6.5	11
10	Enhanced removal of antibiotics and antibiotic resistance genes in a soil microbial fuel cell via in situ remediation of agricultural soils with multiple antibiotics. Science of the Total Environment, 2022, 829, 154406.	3.9	23
11	Simultaneous bioelectricity generation and pollutants removal of sediment microbial fuel cell combined with submerged macrophyte. International Journal of Hydrogen Energy, 2021, 46, 11378-11388.	3.8	23
12	Effects of operating parameters on salinity accumulation in a bioelectrochemically-assisted osmotic membrane bioreactor. Bioresource Technology, 2021, 319, 124208.	4.8	6
13	Microbial fuel cell coupled ecological floating bed for enhancing bioelectricity generation and nitrogen removal. International Journal of Hydrogen Energy, 2021, 46, 11433-11444.	3.8	18
14	Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell. Bioresource Technology, 2021, 320, 124285.	4.8	42
15	A comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic membrane bioreactors. Bioresource Technology, 2021, 320, 124300.	4.8	18
16	Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. ISME Journal, 2021, 15, 2969-2985.	4.4	99
17	Minimizing salinity accumulation via regulating draw solute concentration in a bioelectrochemically assisted osmotic membrane bioreactor. Chemosphere, 2021, 272, 129613.	4.2	3
18	Biological detoxification and decolorization enhancement of azo dye by introducing natural electron mediators in MFCs. Journal of Hazardous Materials, 2021, 416, 125864.	6.5	34

HAI-LIANG SONG

#	Article	IF	CITATIONS
19	Microbial Fuel Cell-Membrane Bioreactor Integrated System for Wastewater Treatment and Bioelectricity Production: Overview. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	23
20	Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors. Bioresource Technology, 2020, 296, 122290.	4.8	37
21	Bioelectrochemically assisted osmotic membrane bioreactor with reusable polyelectrolyte draw solutes. Bioresource Technology, 2020, 296, 122352.	4.8	10
22	Enhanced removal of antibiotics in wastewater by membrane bioreactor with addition of rice straw. International Biodeterioration and Biodegradation, 2020, 148, 104868.	1.9	16
23	Phosphorus Removal from Wastewater by Electrocoagulation with Magnetized Iron Particle Anode. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
24	Enhanced Performance of Microbial Fuel Cells with Electron Mediators from Anthraquinone/Polyphenol-Abundant Herbal Plants. ACS Sustainable Chemistry and Engineering, 2020, 8, 11263-11275.	3.2	21
25	Enhancing the performance of a bioelectrochemically assisted osmotic membrane bioreactor based on reverse diffusion of organic and buffering draw solutes. Desalination, 2020, 496, 114730.	4.0	9
26	Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc. Environmental Pollution, 2020, 265, 115084.	3.7	44
27	A review of bioelectrochemical systems for antibiotic removal: Efficient antibiotic removal and dissemination of antibiotic resistance genes. Journal of Water Process Engineering, 2020, 37, 101421.	2.6	43
28	Bioelectrochemically-assisted nitrogen removal in osmotic membrane bioreactor. Water Science and Technology, 2020, 82, 330-338.	1.2	0
29	Degradation of sulfamethoxazole in low-C/N ratio wastewater by a novel membrane bioelectrochemical reactor. Bioresource Technology, 2020, 305, 123029.	4.8	18
30	Constructed Wetland Revealed Efficient Sulfamethoxazole Removal but Enhanced the Spread of Antibiotic Resistance Genes. Molecules, 2020, 25, 834.	1.7	27
31	Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater. Chemosphere, 2020, 248, 126014.	4.2	75
32	Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition. Bioresource Technology, 2020, 306, 123182.	4.8	27
33	Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance geneÂin up flow microbial fuel cell constructed wetland. Water Research, 2019, 165, 114988.	5.3	94
34	Mitigation of solute buildup by using a biodegradable and reusable polyelectrolyte as a draw solute in an osmotic membrane bioreactor. Environmental Science: Water Research and Technology, 2019, 5, 19-27.	1.2	10
35	In Situ Nutrient Removal from Rural Runoff by A New Type Aerobic/Anaerobic/Aerobic Water Spinach Wetlands. Water (Switzerland), 2019, 11, 1100.	1.2	3
36	Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environment International, 2019, 129, 478-487.	4.8	171

HAI-LIANG SONG

#	Article	IF	CITATIONS
37	Characterization of electricity generation and microbial community structure over long-term operation of a microbial fuel cell. Bioresource Technology, 2019, 285, 121395.	4.8	30
38	Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells. Bioresource Technology, 2019, 281, 188-194.	4.8	35
39	Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. Chemosphere, 2019, 217, 599-608.	4.2	75
40	Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells – A mini review. Arabian Journal of Chemistry, 2019, 12, 2236-2243.	2.3	78
41	Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent. Chemosphere, 2018, 203, 434-441.	4.2	85
42	Effects of voltage on sulfadiazine degradation and the response of sul genes and microbial communities in biofilm-electrode reactors. Ecotoxicology and Environmental Safety, 2018, 151, 272-278.	2.9	43
43	A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes. Bioresource Technology, 2018, 256, 224-231.	4.8	71
44	Effects ofdirect current on Klebsiella spp. viability and corresponding resistance gene expression in simulative bio-electrochemical reactors. Chemosphere, 2018, 196, 251-259.	4.2	32
45	A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes. Science of the Total Environment, 2018, 637-638, 295-305.	3.9	58
46	Simulated wastewater reduced Klebsiella michiganensis strain LH-2 viability and corresponding antibiotic resistance gene abundance in bio-electrochemical reactors. Ecotoxicology and Environmental Safety, 2018, 162, 376-382.	2.9	7
47	Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands: Effects of circuit operation mode and hydraulic retention time. Chemical Engineering Journal, 2018, 350, 920-929.	6.6	96
48	FATE AND BIODEGRADATION OF ESTROGENS IN THE ENVIRONMENT AND ENGINEERING SYSTEMS - A REVIEW. Environmental Engineering and Management Journal, 2018, 17, 977-998.	0.2	0
49	Coupled Effects of Electrical Stimulation and Antibiotics on Microbial Community in Three-Dimensional Biofilm-Electrode Reactors. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	27
50	Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water. Chemosphere, 2017, 178, 548-555.	4.2	50
51	Behavior of tetracycline and sulfamethoxazole and their corresponding resistance genes in three-dimensional biofilm-electrode reactors with low current. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 333-340.	0.9	8
52	Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells. Bioresource Technology, 2017, 244, 345-352.	4.8	66
53	Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems. Water (Switzerland), 2017, 9, 185.	1.2	42
54	A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products. Ecological Engineering, 2016, 94, 455-463.	1.6	85

HAI-LIANG SONG

#	Article	IF	CITATIONS
55	Fate of tetracycline and sulfamethoxazole and their corresponding resistance genes in microbial fuel cell coupled constructed wetlands. RSC Advances, 2016, 6, 95999-96005.	1.7	54
56	Effect of electrical stimulation on the fate of sulfamethoxazole and tetracycline with their corresponding resistance genes in three-dimensional biofilm-electrode reactors. Chemosphere, 2016, 164, 113-119.	4.2	81
57	New process for copper migration by bioelectricity generation in soil microbial fuel cells. Environmental Science and Pollution Research, 2016, 23, 13147-13154.	2.7	50
58	The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community. Environmental Technology (United Kingdom), 2016, 37, 1683-1692.	1.2	34
59	Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosensors and Bioelectronics, 2015, 68, 135-141.	5.3	211
60	Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell. Bioresource Technology, 2015, 189, 87-93.	4.8	164
61	The effect of continuous Ni(II) exposure on the organic degradation and soluble microbial product (SMP) formation in two-phase anaerobic reactor. Journal of Environmental Sciences, 2015, 33, 78-87.	3.2	18
62	Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors. Biochemical Engineering Journal, 2015, 93, 294-302.	1.8	76
63	Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR. Journal of Hazardous Materials, 2015, 283, 186-192.	6.5	117
64	Removal of several metal ions from aqueous solution using powdered stem of Arundo donax L. as a new biosorbent. Chemical Engineering Research and Design, 2014, 92, 1915-1922.	2.7	18
65	Role of biologic components in a novel floating-bed combining Ipomoea aquatic, Corbicula fluminea and biofilm carrier media. Frontiers of Environmental Science and Engineering, 2014, 8, 215-225.	3.3	18
66	Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland — Microbial fuel cell systems. Bioresource Technology, 2014, 166, 575-583.	4.8	183
67	Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology, 2013, 144, 165-171.	4.8	267
68	Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System. International Journal of Photoenergy, 2013, 2013, 1-10.	1.4	101
69	Enhanced removal of organic matter and nitrogen in a vertical-flow constructed wetland with <i>Eisenia foetida</i> . Desalination and Water Treatment, 2013, 51, 7460-7468.	1.0	13
70	Characterizing membrane foulants in MBR with addition of polyferric chloride to enhance phosphorus removal. Bioresource Technology, 2011, 102, 9490-9496.	4.8	34
71	Elimination of estrogens and estrogenic activity from sewage treatment works effluents in subsurface and surface flow constructed wetlands. International Journal of Environmental Analytical Chemistry, 2011, 91, 600-614.	1.8	8
72	Influence of diatomite addition on membrane fouling and performance in a submerged membrane bioreactor. Bioresource Technology, 2010, 101, 9178-9184.	4.8	35

#	Article	IF	CITATIONS
73	An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering, 2010, 36, 382-390.	1.6	210
74	Investigation of microcystin removal from eutrophic surface water by aquatic vegetable bed. Ecological Engineering, 2009, 35, 1589-1598.	1.6	60