
## David L Wood Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578925/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF         | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 1  | Slot-die-coating operability windows for polymer electrolyte membrane fuel cell cathode catalyst<br>layers. Journal of Colloid and Interface Science, 2022, 610, 474-485.                                                                   | 5.0        | 25        |
| 2  | Review—Electrospun Inorganic Solid-State Electrolyte Fibers for Battery Applications. Journal of the Electrochemical Society, 2022, 169, 050527.                                                                                            | 1.3        | 7         |
| 3  | Aqueous Ni-rich-cathode dispersions processed with phosphoric acid for lithium-ion batteries with ultra-thick electrodes. Journal of Colloid and Interface Science, 2021, 581, 635-643.                                                     | 5.0        | 34        |
| 4  | Na <sub>1+<i>x</i></sub> Mn <sub><i>x</i>/2</sub> Zr <sub>2–<i>x</i>/2</sub> (PO <sub>4</sub> ) <sub>3as a Li<sup>+</sup> and Na<sup>+</sup> Super Ion Conductor for Solid-State Batteries. ACS Energy<br/>Letters, 2021, 6, 429-436.</sub> | ub><br>8.8 | 20        |
| 5  | Improving Contact Impedance via Electrochemical Pulses Applied to Lithium–Solid Electrolyte<br>Interface in Solid-State Batteries. ACS Energy Letters, 2021, 6, 3669-3675.                                                                  | 8.8        | 40        |
| 6  | Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells. Journal of Power Sources, 2021, 515, 230429.                                             | 4.0        | 41        |
| 7  | High-Energy and High-Power Lithium-Ion Cells Enabled by Electrochemically Derived Carbon<br>Nanotubes. ECS Meeting Abstracts, 2021, MA2021-02, 528-528.                                                                                     | 0.0        | 0         |
| 8  | Effects of Processing Time, Mixing Speed, and Mixer on Agglomerates in Fuel Cell Cathode Inks. ECS<br>Meeting Abstracts, 2021, MA2021-02, 1085-1085.                                                                                        | 0.0        | 0         |
| 9  | Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by<br>aqueous processing for high-energy Li-Ion batteries. Energy Storage Materials, 2020, 24, 188-197.                                          | 9.5        | 155       |
| 10 | Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite cells–effect of binder. Journal of Power<br>Sources, 2020, 448, 227414.                                                                                                              | 4.0        | 6         |
| 11 | Electrochemical Healing of Dendrites in Garnet-Based Solid Electrolytes. ACS Energy Letters, 2020, 5, 3368-3373.                                                                                                                            | 8.8        | 31        |
| 12 | Styrene-Based Elastomer Composites with Functionalized Graphene Oxide and Silica Nanofiber Fillers:<br>Mechanical and Thermal Conductivity Properties. Nanomaterials, 2020, 10, 1682.                                                       | 1.9        | 14        |
| 13 | On electrolyte wetting through lithium-ion battery separators. Extreme Mechanics Letters, 2020, 40, 100960.                                                                                                                                 | 2.0        | 38        |
| 14 | Perspectives on the relationship between materials chemistry and roll-to-roll electrode<br>manufacturing for high-energy lithium-ion batteries. Energy Storage Materials, 2020, 29, 254-265.                                                | 9.5        | 54        |
| 15 | Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes—A<br>Green and Sustainable Manufacturing System. IScience, 2020, 23, 101081.                                                                     | 1.9        | 74        |
| 16 | Eutectic Synthesis of the P2-Type<br>Na <sub><i>x</i></sub> Fe <sub>1/2</sub> Mn <sub>1/2</sub> O <sub>2</sub> Cathode with Improved Cell<br>Design for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 23951-23958.    | 4.0        | 21        |
| 17 | Bulk and surface structural changes in high nickel cathodes subjected to fast charging conditions.<br>Chemical Communications, 2020, 56, 6973-6976.                                                                                         | 2.2        | 11        |
| 18 | Lithium and transition metal dissolution due to aqueous processing in lithium-ion battery cathode active materials. Journal of Power Sources, 2020, 466, 228315.                                                                            | 4.0        | 61        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Probing Thermal Stability of Li-Ion Battery Ni-Rich Layered Oxide Cathodes by means of Operando Gas<br>Analysis and Neutron Diffraction. ACS Applied Energy Materials, 2020, 3, 7058-7065.                                       | 2.5  | 28        |
| 20 | Towards Understanding of Cracking during Drying of Thick Aqueous-Processed<br>LiNi <sub>0.8</sub> Mn <sub>0.1</sub> Co <sub>0.1</sub> O <sub>2</sub> Cathodes. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 3162-3169. | 3.2  | 59        |
| 21 | Effect of binder on the overcharge response in LiFePO4-containing cells. Journal of Power Sources, 2020, 450, 227595.                                                                                                            | 4.0  | 4         |
| 22 | High accuracy in-situ direct gas analysis of Li-ion batteries. Journal of Power Sources, 2020, 466, 228211.                                                                                                                      | 4.0  | 20        |
| 23 | Highâ€Voltage Performance of Niâ€Rich NCA Cathodes: Linking Operating Voltage with Cathode<br>Degradation. ChemElectroChem, 2019, 6, 5571-5580.                                                                                  | 1.7  | 13        |
| 24 | Evaluation of Gas Formation and Consumption Driven by Crossover Effect in High-Voltage Lithium-Ion<br>Batteries with Ni-Rich NMC Cathodes. ACS Applied Materials & Interfaces, 2019, 11, 43235-43243.                            | 4.0  | 50        |
| 25 | Drying Temperature and Capillarity-Driven Crack Formation in Aqueous Processing of Li-Ion Battery Electrodes. ACS Applied Energy Materials, 2019, 2, 4464-4476.                                                                  | 2.5  | 39        |
| 26 | High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries. Green<br>Energy and Environment, 2019, 4, 375-381.                                                                                  | 4.7  | 17        |
| 27 | Effect of overcharge on lithium-ion cells: Silicon/graphite anodes. Journal of Power Sources, 2019, 432, 73-81.                                                                                                                  | 4.0  | 7         |
| 28 | Effect of formation protocol: Cells containing Si-Graphite composite electrodes. Journal of Power Sources, 2019, 435, 126548.                                                                                                    | 4.0  | 12        |
| 29 | Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes. Electrochemistry Communications, 2019, 103, 109-113.                                                                    | 2.3  | 106       |
| 30 | Analysis of electrolyte imbibition through lithium-ion battery electrodes. Journal of Power Sources, 2019, 424, 193-203.                                                                                                         | 4.0  | 61        |
| 31 | Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-Ion Battery Graphite and PVDF Binder.<br>Journal of the Electrochemical Society, 2019, 166, A1121-A1126.                                                        | 1.3  | 9         |
| 32 | Effect of calendering and temperature on electrolyte wetting in lithium-ion battery electrodes.<br>Journal of Energy Storage, 2019, 26, 101034.                                                                                  | 3.9  | 52        |
| 33 | Formation Challenges of Lithium-Ion Battery Manufacturing. Joule, 2019, 3, 2884-2888.                                                                                                                                            | 11.7 | 86        |
| 34 | Unveiling the Role of Al <sub>2</sub> O <sub>3</sub> in Preventing Surface Reconstruction During<br>High-Voltage Cycling of Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1308-1313.                             | 2.5  | 41        |
| 35 | Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2 cathodes: NMP-soluble binder. II — Chemical changes in the anode. Journal of Power Sources, 2018, 385, 156-164.                                                                    | 4.0  | 18        |
| 36 | What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?. Journal of Power Sources, 2018, 384, 136-144.                                                      | 4.0  | 69        |

| #  | Article                                                                                                                                                        | IF       | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 37 | Si Oxidation and H <sub>2</sub> Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes.<br>Journal of Physical Chemistry C, 2018, 122, 9746-9754. | 1.5      | 23          |
| 38 | Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion cells with poly(vinylidene) Tj ETQq0 0 0 rgBT                                               | Overlock | 10 Tf 50 70 |

| 39 | Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 3470-3478.                            | 4.0              | 77               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 40 | Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite lithium ion cells with poly(vinylidene) Tj ETQq0 0 0 rgBT<br>148-155.                                                                              | /Overlock<br>4.0 | 10 Tf 50 6<br>26 |
| 41 | Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode. Electrochimica Acta, 2018, 270, 54-61.                                                                | 2.6              | 39               |
| 42 | Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP.<br>Drying Technology, 2018, 36, 234-244.                                                                | 1.7              | 158              |
| 43 | In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment. Journal of Power Sources, 2018, 375, 138-148.                  | 4.0              | 6                |
| 44 | Balancing formation time and electrochemical performance of high energy lithium-ion batteries.<br>Journal of Power Sources, 2018, 402, 107-115.                                                           | 4.0              | 56               |
| 45 | Identifying degradation mechanisms in lithium-ion batteries with coating defects at the cathode.<br>Applied Energy, 2018, 231, 446-455.                                                                   | 5.1              | 39               |
| 46 | Chemical Evolution in Silicon–Graphite Composite Anodes Investigated by Vibrational Spectroscopy.<br>ACS Applied Materials & Interfaces, 2018, 10, 18641-18649.                                           | 4.0              | 50               |
| 47 | Characterization of Surface Free Energy of Composite Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A2493-A2501.                                                | 1.3              | 52               |
| 48 | Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1837-A1845.                                                                  | 1.3              | 65               |
| 49 | Fast formation cycling for lithium ion batteries. Journal of Power Sources, 2017, 342, 846-852.                                                                                                           | 4.0              | 119              |
| 50 | Correlation of Electrolyte Volume and Electrochemical Performance in Lithium-Ion Pouch Cells with<br>Graphite Anodes and NMC532 Cathodes. Journal of the Electrochemical Society, 2017, 164, A1195-A1202. | 1.3              | 64               |
| 51 | Enabling aqueous processing for crack-free thick electrodes. Journal of Power Sources, 2017, 354, 200-206.                                                                                                | 4.0              | 112              |
| 52 | Design and Demonstration of Three-Electrode Pouch Cells for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1755-A1764.                                                        | 1.3              | 57               |
| 53 | Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in<br>Si-Graphite/NMC Lithium-Ion Pouch Cells. ACS Applied Materials & Interfaces, 2017, 9, 18799-18808.       | 4.0              | 65               |
| 54 | Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. Jom, 2017, 69, 1484-1496.                                                                                             | 0.9              | 186              |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion<br>batteries; Alternation in chemistry, composition and crystal structures. Nano Energy, 2017, 36, 76-84.                         | 8.2 | 30        |
| 56 | Evaporation induced nanoparticle – binder interaction in electrode film formation. Physical<br>Chemistry Chemical Physics, 2017, 19, 10051-10061.                                                                               | 1.3 | 13        |
| 57 | Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. Journal of Applied Electrochemistry, 2017, 47, 405-415.                                                       | 1.5 | 217       |
| 58 | Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density.<br>Electrochimica Acta, 2017, 254, 123-129.                                                                                 | 2.6 | 12        |
| 59 | Processing–Structure–Property Relationships for Ligninâ€Based Carbonaceous Materials Used in<br>Energyâ€&torage Applications. Energy Technology, 2017, 5, 1311-1321.                                                            | 1.8 | 27        |
| 60 | The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016, 105, 52-76.                                                          | 5.4 | 1,335     |
| 61 | Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery. Journal of the Electrochemical Society, 2016, 163, A2776-A2780.                                                                                        | 1.3 | 21        |
| 62 | Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface<br>Phase Transitions for High-Voltage Lithium-Ion Batteries. Scientific Reports, 2016, 6, 26532.                                | 1.6 | 196       |
| 63 | Long-Term Lithium-Ion Battery Performance Improvement via Ultraviolet Light Treatment of the<br>Graphite Anode. Journal of the Electrochemical Society, 2016, 163, A2866-A2875.                                                 | 1.3 | 31        |
| 64 | Evaluation Residual Moisture in Lithium-Ion Battery Electrodes and Its Effect on Electrode<br>Performance. MRS Advances, 2016, 1, 1029-1035.                                                                                    | 0.5 | 78        |
| 65 | Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries:<br>Cognizance of the battery failure sources. Journal of Power Sources, 2016, 312, 70-79.                                    | 4.0 | 132       |
| 66 | Understanding the structure and structural degradation mechanisms in high-voltage,<br>lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics. MRS<br>Energy & Sustainability, 2015, 2, 1. | 1.3 | 42        |
| 67 | Unconventional irreversible structural changes in a high-voltage Li–Mn-rich oxide for lithium-ion<br>battery cathodes. Journal of Power Sources, 2015, 283, 423-428.                                                            | 4.0 | 17        |
| 68 | Prospects for reducing the processing cost of lithium ion batteries. Journal of Power Sources, 2015, 275, 234-242.                                                                                                              | 4.0 | 588       |
| 69 | Cathode materials review. AIP Conference Proceedings, 2014, , .                                                                                                                                                                 | 0.3 | 60        |
| 70 | Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods. Analytical Methods, 2014, 6, 674-683.                                                  | 1.3 | 41        |
| 71 | Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the<br>Tetrahedral Cations for Spinel Conversion. Chemistry of Materials, 2014, 26, 6272-6280.                                    | 3.2 | 236       |
| 72 | In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode<br>LiMn <sub>1.5</sub> Ni <sub>0.5</sub> 0 <sub>4</sub> . ACS Applied Materials & Interfaces, 2014, 6,<br>18569-18576.     | 4.0 | 68        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries. Carbon, 2014, 72, 393-401.                                                                                                                                                  | 5.4 | 50        |
| 74 | Degradation mechanisms of lithium-rich nickel manganese cobalt oxide cathode thin films. RSC<br>Advances, 2014, 4, 23364.                                                                                                                                                               | 1.7 | 45        |
| 75 | Neutron Diffraction and Magnetic Susceptibility Studies on a High-Voltage<br>Li <sub>1.2</sub> Mn <sub>0.55</sub> Ni <sub>0.15</sub> Co <sub>0.10</sub> O <sub>2</sub> Lithium Ion<br>Battery Cathode: Insight into the Crystal Structure. Chemistry of Materials, 2013, 25, 4064-4070. | 3.2 | 89        |
| 76 | Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery<br>cathode oxide: a joint magnetic susceptibility and TEM study. Physical Chemistry Chemical Physics,<br>2013, 15, 19496.                                                                  | 1.3 | 108       |
| 77 | Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. Journal of Power Sources, 2013, 229, 239-248.                                                                                           | 4.0 | 472       |
| 78 | Lithium Ion Cell Performance Enhancement Using Aqueous LiFePO <sub>4</sub> Cathode Dispersions and Polyethyleneimine Dispersant. Journal of the Electrochemical Society, 2013, 160, A201-A206.                                                                                          | 1.3 | 88        |
| 79 | Characterization and analyses of degradation and recovery of LaNi4.78Sn0.22 hydrides following thermal aging. Journal of Alloys and Compounds, 2013, 580, S207-S210.                                                                                                                    | 2.8 | 12        |
| 80 | Structural transformation in a Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold. RSC Advances, 2013, 3, 7479.                                                                                                                                              | 1.7 | 44        |
| 81 | Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during<br>high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. Journal of<br>Materials Chemistry A, 2013, 1, 6249.                                 | 5.2 | 125       |
| 82 | Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4)<br>nanoparticles and carbon black for lithium-ion battery cathodes. Journal of Colloid and Interface<br>Science, 2013, 405, 118-124.                                                             | 5.0 | 69        |
| 83 | Superior Performance of LiFePO <sub>4</sub> Aqueous Dispersions via Corona Treatment and Surface<br>Energy Optimization. Journal of the Electrochemical Society, 2012, 159, A1152-A1157.                                                                                                | 1.3 | 65        |
| 84 | Optimization of LiFePO <sub>4</sub> Nanoparticle Suspensions with Polyethyleneimine for Aqueous<br>Processing. Langmuir, 2012, 28, 3783-3790.                                                                                                                                           | 1.6 | 89        |
| 85 | Advanced Materials Processing for Lithium Ion Battery Applications. ECS Meeting Abstracts, 2012, , .                                                                                                                                                                                    | 0.0 | Ο         |
| 86 | Materials processing for lithium-ion batteries. Journal of Power Sources, 2011, 196, 2452-2460.                                                                                                                                                                                         | 4.0 | 343       |
| 87 | Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies. Electrochimica Acta, 2010, 55, 7404-7412.                                                                                                                                          | 2.6 | 100       |
| 88 | Surface Properties of PEMFC Gas Diffusion Layers. Journal of the Electrochemical Society, 2010, 157, B195.                                                                                                                                                                              | 1.3 | 51        |
| 89 | Estimation of Mass-Transport Overpotentials during Long-Term PEMFC Operation. Journal of the Electrochemical Society, 2010, 157, B1251.                                                                                                                                                 | 1.3 | 27        |
| 90 | In-Plane Mass-Transport Studies of GDL Variation Using the Segmented Cell Approach. ECS<br>Transactions, 2009, 25, 1495-1506.                                                                                                                                                           | 0.3 | 6         |

| #   | Article                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Nafion Structural Phenomena at Platinum and Carbon Interfaces. Journal of the American Chemical Society, 2009, 131, 18096-18104.                                                  | 6.6  | 118       |
| 92  | Durability Aspects of Gas-Diffusion and Microporous Layers. , 2009, , 159-195.                                                                                                    |      | 15        |
| 93  | Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chemical Reviews, 2007, 107, 3904-3951.                                                           | 23.0 | 2,976     |
| 94  | PEM fuel cell electrocatalyst durability measurements. Journal of Power Sources, 2006, 163, 76-81.                                                                                | 4.0  | 437       |
| 95  | PEMFC Component Characterization and Its Relationship to Mass-Transport Overpotentials during Long-Term Testing. ECS Transactions, 2006, 3, 753-763.                              | 0.3  | 17        |
| 96  | Elucidation of PEMFC Electrocatalyst-Layer Surface and Interfacial Phenomena via Neutron Reflectivity. ECS Transactions, 2006, 3, 1011-1021.                                      | 0.3  | 4         |
| 97  | PEM Fuel Cell Durability With Transportation Transient Operation. ECS Transactions, 2006, 3, 879-886.                                                                             | 0.3  | 49        |
| 98  | Durability of PEFCs at High Humidity Conditions. Journal of the Electrochemical Society, 2005, 152, A104.                                                                         | 1.3  | 332       |
| 99  | Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High<br>Humidity Conditions. Journal of the Electrochemical Society, 2005, 152, A1011. | 1.3  | 328       |
| 100 | Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochimica Acta, 1998, 43, 3795-3809.        | 2.6  | 260       |