Bram J J Slagmolen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3578907/bram-j-j-slagmolen-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

228
papers
239,886
papers
citations

47,572
ext. papers

39,886
papers
h-index

5.62
avg, IF
L-index

#	Paper	IF	Citations
228	Large dynamic range, high resolution optical heterodyne readout for high velocity slip events. <i>Review of Scientific Instruments</i> , 2022 , 93, 064503	1.7	
227	Research and Development for Third-Generation Gravitational Wave Detectors 2022, 301-360		
226	Research and Development for Third-Generation Gravitational Wave Detectors 2021 , 1-60		
225	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
224	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001	3.3	15
223	Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. <i>Physical Review D</i> , 2021 , 103,	4.9	11
222	Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories. <i>Physical Review Letters</i> , 2021 , 127, 081102	7.4	2
221	LIGO quantum response to squeezed states. <i>Physical Review D</i> , 2021 , 104,	4.9	5
220	Point Absorber Limits to Future Gravitational-Wave Detectors <i>Physical Review Letters</i> , 2021 , 127, 241	10 ₇ 2 ₄	0
219	Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. <i>Publications of the Astronomical Society of Australia</i> , 2020 , 37,	5.5	47
218	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. <i>Physical Review D</i> , 2020 , 102,	4.9	84
217	Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford. <i>Physical Review D</i> , 2020 , 101,	4.9	8
216	Quantum enhanced kHz gravitational wave detector with internal squeezing. <i>Classical and Quantum Gravity</i> , 2020 , 37, 07LT02	3.3	6
215	Generation and control of frequency-dependent squeezing via Einstein Podolsky Rosen entanglement. <i>Nature Photonics</i> , 2020 , 14, 223-226	33.9	13
214	Tunable narrow-linewidth laser at 2 th wavelength for gravitational wave detector research. <i>Optics Express</i> , 2020 , 28, 3280-3288	3.3	11
213	Practical test mass and suspension configuration for a cryogenic kilohertz gravitational wave detector. <i>Physical Review D</i> , 2020 , 102,	4.9	2
212	Low phase noise squeezed vacuum for future generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2020 , 37, 185014	3.3	2

(2018-2020)

211	Improving the robustness of the advanced LIGO detectors to earthquakes. <i>Classical and Quantum Gravity</i> , 2020 , 37, 235007	3.3	4	
210	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144	
209	Broadband reduction of quantum radiation pressure noise via squeezed light injection. <i>Nature Photonics</i> , 2020 , 14, 19-23	33.9	18	
208	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. <i>Physical Review D</i> , 2019 , 99,	4.9	58	
207	Squeezed vacuum phase control at 2 In. Optics Letters, 2019, 44, 5386-5389	3	6	
206	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. <i>Physical Review Letters</i> , 2019 , 123, 231107	7.4	182	
205	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO® first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62	
204	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120	
203	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12	
202	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50	
201	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543	
200	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. <i>Physical Review D</i> , 2018 , 97,	4.9	77	
199	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37	
198	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60	
197	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2	
196	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49	
195	Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO. <i>Physical Review Letters</i> , 2018 , 121, 221104	7.4	28	
194	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867	

193	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7∙4	60
192	Observation of Squeezed Light in the 2 h Region. <i>Physical Review Letters</i> , 2018 , 120, 203603	7.4	17
191	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454
190	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
189	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
188	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. <i>Physical Review D</i> , 2017 , 95,	4.9	60
187	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
186	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
185	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
184	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
183	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
182	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
181	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
180	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
179	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
178	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
177	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
176	Quantum correlation measurements in interferometric gravitational-wave detectors. <i>Physical Review A</i> , 2017 , 95,	2.6	9

175	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
174	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
173	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
172	Measurable signatures of quantum mechanics in a classical spacetime. <i>Physical Review D</i> , 2017 , 96,	4.9	4
171	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. <i>Physical Review Letters</i> , 2017 , 118, 151102	7.4	18
170	LISA pathfinder appreciably constrains collapse models. <i>Physical Review D</i> , 2017 , 95,	4.9	35
169	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
168	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
167	Effects of transients in LIGO suspensions on searches for gravitational waves. <i>Review of Scientific Instruments</i> , 2017 , 88, 124501	1.7	4
166	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. <i>Astrophysical Journal Letters</i> , 2017 , 850, L35	7.9	104
165	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
164	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
163	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
162	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
161	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
160	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
159	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
158	Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor. <i>Classical and Quantum Gravity</i> , 2017 , 34, 135002	3.3	16

157	A robust single-beam optical trap for a gram-scale mechanical oscillator. Scientific Reports, 2017, 7, 145	546 .9	9
156	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
155	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
154	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
153	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
152	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
151	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
150	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
149	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
148	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. <i>Physical Review D</i> , 2016 , 93,	4.9	208
147	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
146	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
145	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
144	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
143	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
142	SUPPLEMENT: IOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[[2016, ApJL, 826, L13]. Astrophysical Journal, Supplement Series, 2016 , 225, 8	8	38
141	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
140	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837

139	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515
138	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
137	Mechanical amorphization, flash heating, and frictional melting: Dramatic changes to fault surfaces during the first millisecond of earthquake slip. <i>Geology</i> , 2016 , 44, 1043-1046	5	26
136	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
135	Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light. <i>Review of Scientific Instruments</i> , 2016 , 87, 063104	1.7	3
134	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
133	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
132	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
131	TorPeDO: A Low Frequency Gravitational Force Sensor. <i>Journal of Physics: Conference Series</i> , 2016 , 716, 012027	0.3	3
130	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52
130	OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal,	32.5	52 393
	OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and		
129	OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1 Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X,	32.5	393
129	OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1]. Astrophysical Journal, Supplement Series, 2016, 227, 14 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1 Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on	32.5 9.1	393 89
129 128 127	OBSERVATIONS SURROUNDING GW150914[(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1 Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS	32.5 9.1 4.9	393 89 29
129 128 127	OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1]. Astrophysical Journal, Supplement Series, 2016, 227, 14 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1 Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1 Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford	32.5 9.1 4.9 7.9	393 89 29 209
129 128 127 126	OBSERVATIONS SURROUNDING GW150914[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14 Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1 Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1 Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D,	32.5 9.1 4.9 7.9 4.9	393 89 29 209 26

121	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
120	A squeezed light source operated under high vacuum. <i>Scientific Reports</i> , 2015 , 5, 18052	4.9	14
119	Frequency dependence of thermal noise in gram-scale cantilever flexures. <i>Physical Review D</i> , 2015 , 92,	4.9	5
118	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
117	Quantum squeezed light in gravitational-wave detectors. Classical and Quantum Gravity, 2014, 31, 1830	031.3	34
116	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
115	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014 , 785, 119	4.7	109
114	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18
113	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34
112	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005\(\textstyle 010. \textstyle Physical Review D, \textstyle 2014, 89,	4.9	26
111	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
110	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
109	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25
108	Concepts and research for future detectors. <i>General Relativity and Gravitation</i> , 2014 , 46, 1	2.3	2
107	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51
106	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54
105	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7·4	59
104	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74

(2012-2014)

103	Achieving resonance in the Advanced LIGO gravitational-wave interferometer. <i>Classical and Quantum Gravity</i> , 2014 , 31, 245010	3.3	41
102	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25
101	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\textstyle{0}\) 010. <i>Physical Review D</i> , 2013 , 87,	4.9	91
100	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
99	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. <i>Nature Photonics</i> , 2013 , 7, 613-619	33.9	572
98	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 008-008	6.4	29
97	Low-frequency terrestrial gravitational-wave detectors. Physical Review D, 2013, 88,	4.9	54
96	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
95	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
94	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57
93	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. <i>Astrophysical Journal</i> , 2012 , 755, 2	4.7	53
92	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
91	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
90	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40
89	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
88	Publisher Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D 83, 042001 (2011)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
87	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
86	Publisher Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D 82, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2

85	DC readout experiment in Enhanced LIGO. Classical and Quantum Gravity, 2012, 29, 065005	3.3	78
84	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012 , 203, 28	8	57
83	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59
82	Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers. <i>Optics Express</i> , 2012 , 20, 81-9	3.3	27
81	Control and tuning of a suspended Fabry-Perot cavity using digitally enhanced heterodyne interferometry. <i>Optics Letters</i> , 2012 , 37, 4952-4	3	6
80	Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	3
79	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69
78	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
77	Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
76	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
75	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. <i>Astrophysical Journal</i> , 2011 , 737, 93	4.7	75
74	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. <i>Physical Review D</i> , 2011 , 83,	4.9	40
73	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. <i>Physical Review D</i> , 2011 , 83,	4.9	77
72	High-sensitivity three-mode optomechanical transducer. <i>Physical Review A</i> , 2011 , 84,	2.6	9
71	Tip-tilt mirror suspension: beam steering for advanced laser interferometer gravitational wave observatory sensing and control signals. <i>Review of Scientific Instruments</i> , 2011 , 82, 125108	1.7	8
70	Directional limits on persistent gravitational waves using LIGO S5 science data. <i>Physical Review Letters</i> , 2011 , 107, 271102	7.4	85
69	A gravitational wave observatory operating beyond the quantum shot-noise limit. <i>Nature Physics</i> , 2011 , 7, 962-965	16.2	554
68	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. <i>Astrophysical Journal</i> , 2010 , 713, 671-685	4.7	140

(2009-2010)

67	Testing the suppression of opto-acoustic parametric interactions using optical feedback control. <i>Classical and Quantum Gravity</i> , 2010 , 27, 084028	3.3	5
66	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2010 , 27, 084005	3.3	17
65	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. <i>Physical Review D</i> , 2010 , 82,	4.9	100
64	Stable transfer of an optical frequency standard via a 4.6 km optical fiber. <i>Optics Express</i> , 2010 , 18, 5213	3-329	8
63	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. <i>Physical Review D</i> , 2010 , 81,	4.9	81
62	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2010 , 27, 173001	3.3	869
61	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. <i>Astrophysical Journal</i> , 2010 , 715, 1453	- 1 : 7 61	79
60	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. <i>Astrophysical Journal</i> , 2010 , 715, 1438-1	452	54
59	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010 , 722, 1504-1513	4.7	95
58	Digital Laser Frequency Stabilization Using an Optical Cavity. <i>IEEE Journal of Quantum Electronics</i> , 2010 , 46, 1178-1183	2	13
57	Calibration of the LIGO gravitational wave detectors in the fifth science run. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 624, 223-240	1.2	108
56	All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data. <i>Physical Review Letters</i> , 2009 , 102, 111102	7.4	77
55	Observation of optical torsional stiffness in a high optical power cavity. <i>Applied Physics Letters</i> , 2009 , 94, 081105	3.4	7
54	Observation of a kilogram-scale oscillator near its quantum ground state. <i>New Journal of Physics</i> , 2009 , 11, 073032	2.9	93
53	An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009 , 460, 990-4	50.4	267
52	Einstein@Home search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2009 , 79,	4.9	77
51	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. <i>Physical Review D</i> , 2009 , 80,	4.9	71
50	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. <i>Physical Review D</i> , 2009 , 80,	4.9	73

49	First LIGO search for gravitational wave bursts from cosmic (super)strings. <i>Physical Review D</i> , 2009 , 80,	4.9	43
48	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGOS fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	100
47	Search for gravitational waves from low mass binary coalescences in the first year of LIGOES5 data. <i>Physical Review D</i> , 2009 , 79,	4.9	115
46	Picometer level displacement metrology with digitally enhanced heterodyne interferometry. <i>Optics Express</i> , 2009 , 17, 828-37	3.3	35
45	Direct measurement of absorption-induced wavefront distortion in high optical power systems. <i>Applied Optics</i> , 2009 , 48, 355-64	0.2	11
44	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. <i>Physical Review D</i> , 2009 , 80,	4.9	36
43	Search for high frequency gravitational-wave bursts in the first calendar year of LIGOE fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	31
42	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009 , 701, L68-L74	4.7	40
41	A Comparison Between Digital and Analog Pound-Drever-Hall Laser Stabilization 2009,		1
40	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. <i>Physical Review D</i> , 2008 , 77,	4.9	55
39	All-sky search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2008 , 77,	4.9	98
38	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. <i>Physical Review D</i> , 2008 , 78,	4.9	51
37	Feedback control of thermal lensing in a high optical power cavity. <i>Review of Scientific Instruments</i> , 2008 , 79, 104501	1.7	5
36	dc readout experiment at the Caltech 40m prototype interferometer. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114030	3.3	27
35	Astrophysically triggered searches for gravitational waves: status and prospects. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114051	3.3	24
34	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. <i>Classical and Quantum Gravity</i> , 2008 , 25, 245008	3.3	19
33	A joint search for gravitational wave bursts with AURIGA and LIGO. <i>Classical and Quantum Gravity</i> , 2008 , 25, 095004	3.3	15
32	Observation of three-mode parametric interactions in long optical cavities. <i>Physical Review A</i> , 2008 , 78,	2.6	29

(2005-2008)

31	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. <i>Physical Review D</i> , 2008 , 77,	4.9	117
30	Search for gravitational-wave bursts from soft gamma repeaters. <i>Physical Review Letters</i> , 2008 , 101, 211102	7.4	64
29	Implications for the Origin of GRB 070201 from LIGO Observations. <i>Astrophysical Journal</i> , 2008 , 681, 1419-1430	4.7	126
28	Three Successive and Interacting Shock Waves Generated by a Solar Flare. <i>Astrophysical Journal</i> , 2008 , 684, L45-L49	4.7	23
27	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. <i>Astrophysical Journal</i> , 2008 , 683, L45-L49	4.7	148
26	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. <i>Physical Review D</i> , 2007 , 76,	4.9	116
25	Upper limit map of a background of gravitational waves. <i>Physical Review D</i> , 2007 , 76,	4.9	85
24	Search for gravitational wave radiation associated with the pulsating tail of the SGR 180620 hyperflare of 27 December 2004 using LIGO. <i>Physical Review D</i> , 2007 , 76,	4.9	48
23	Search for gravitational-wave bursts in LIGO data from the fourth science run. <i>Classical and Quantum Gravity</i> , 2007 , 24, 5343-5369	3.3	70
22	Upper limits on gravitational wave emission from 78 radio pulsars. <i>Physical Review D</i> , 2007 , 76,	4.9	109
21	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. <i>Physical Review D</i> , 2007 , 76,	4.9	33
20	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. <i>Astrophysical Journal</i> , 2007 , 659, 918-930	4.7	107
19	Status of the Australian Consortium for Interferometric Gravitational Astronomy. <i>Classical and Quantum Gravity</i> , 2006 , 23, S41-S49	3.3	14
18	Compensation of strong thermal lensing in high-optical-power cavities. <i>Physical Review Letters</i> , 2006 , 96, 231101	7.4	32
17	Towards the SQL: Status of the direct thermal-noise measurements at the ANU. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 362-367	0.3	7
16	Gingin High Optical Power Test Facility. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 368-373	0.3	19
15	Experimental demonstration of in-loop intracavity intensity-noise suppression. <i>IEEE Journal of Quantum Electronics</i> , 2005 , 41, 434-440	2	5
14	Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1. <i>General Relativity and Gravitation</i> , 2005 , 37, 1581-1589	2.3	6

13	Alignment locking to suspended Fabry-Perot cavity. General Relativity and Gravitation, 2005, 37, 1601-	169.8	5
12	Technology developments for ACIGA high power test facility for advanced interferometry. <i>Classical and Quantum Gravity</i> , 2005 , 22, S199-S208	3.3	5
11	ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893	3.3	17
10	Status of ACIGA High Power Test Facility for advanced interferometry 2004 ,		1
9	Australia's Role in Gravitational Wave Detection. <i>Publications of the Astronomical Society of Australia</i> , 2003 , 20, 223-241	5.5	1
8	High performance vibration isolation using springs in Euler column buckling mode. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2002 , 300, 122-130	2.3	89
7	High dynamic range flexure transfer function measurement. <i>Classical and Quantum Gravity</i> , 2002 , 19, 1683-1687	3.3	2
6	Double pass locking and spatial mode locking for gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2002 , 19, 1819-1824	3.3	5
5	Interferometric, modulation-free laser stabilization. <i>Optics Letters</i> , 2002 , 27, 1905-7	3	24
4	Frequency stability of spatial mode interference (tilt) locking. <i>IEEE Journal of Quantum Electronics</i> , 2002 , 38, 1521-1528	2	7
3	Second-generation laser interferometry for gravitational wave detection: ACIGA progress. <i>Classical and Quantum Gravity</i> , 2001 , 18, 4121-4126	3.3	6
2	Phase-sensitive reflection technique for characterization of a fabry-perot interferometer. <i>Applied Optics</i> , 2000 , 39, 3638-43	1.7	26
1	LIGO detector characterization in the second and third observing runs. <i>Classical and Quantum Gravity</i> ,	3.3	31