Eva Jiskrova

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3578745/eva-jiskrova-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

12
papers277
citations8
h-index13
g-index13
ext. papers392
ext. citations6.7
avg, IF2.67
L-index

#	Paper Control of the	IF	Citations
12	Deciphering structural bases of intestinal and hepatic selectivity in targeting pregnane X receptor with indole-based microbial mimics. <i>Bioorganic Chemistry</i> , 2021 , 109, 104661	5.1	3
11	Differential activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in intestinal and hepatic in vitro models. <i>Toxicology Letters</i> , 2020 , 324, 104-110	4.4	10
10	Targeting the pregnane X receptor using microbial metabolite mimicry. <i>EMBO Molecular Medicine</i> , 2020 , 12, e11621	12	26
9	Belinostat, at Its Clinically Relevant Concentrations, Inhibits Rifampicin-Induced CYP3A4 and MDR1 Gene Expression. <i>Molecular Pharmacology</i> , 2019 , 95, 324-334	4.3	8
8	Methylindoles and Methoxyindoles are Agonists and Antagonists of Human Aryl Hydrocarbon Receptor. <i>Molecular Pharmacology</i> , 2018 , 93, 631-644	4.3	18
7	Maize cytokinin dehydrogenase isozymes are localized predominantly to the vacuoles. <i>Plant Physiology and Biochemistry</i> , 2016 , 104, 114-24	5.4	7
6	Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. <i>New Biotechnology</i> , 2016 , 33, 676-691	6.4	32
5	Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. <i>New Biotechnology</i> , 2016 , 33, 692-705	6.4	71
4	Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. <i>New Biotechnology</i> , 2016 , 33, 735-742	6.4	24
3	What turns on and off the cytokinin metabolisms and beyond 2015 , 17-34		
2	Transgenic barley: a prospective tool for biotechnology and agriculture. <i>Biotechnology Advances</i> , 2014 , 32, 137-57	17.8	32
1	Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. <i>PLoS ONE</i> , 2013 , 8, e79029	3.7	46