Helen Spafford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578596/publications.pdf

Version: 2024-02-01

687363 28 388 13 citations h-index papers

19 g-index 28 28 28 406 times ranked docs citations citing authors all docs

794594

#	Article	IF	CITATIONS
1	Insecticide resistance in Australian Spodoptera frugiperda (J.E. Smith) and development of testing procedures for resistance surveillance. PLoS ONE, 2022, 17, e0263677.	2.5	19
2	What Will Fall Armyworm (Lepidoptera: Noctuidae) Cost Western Australian Agriculture?. Journal of Economic Entomology, 2021, 114, 1613-1621.	1.8	15
3	The Aedes albopictus (Diptera: Culicidae) microbiome varies spatially and with Ascogregarine infection. PLoS Neglected Tropical Diseases, 2020, 14, e0008615.	3.0	18
4	Scientists in the Politicoscientific Community: Beyond the Lorax. Annals of the Entomological Society of America, 2019, 112, 57-61.	2.5	1
5	From Research to Policy: Scientists Speaking for Science. Annals of the Entomological Society of America, 2019, 112, 75-78.	2.5	2
6	Suppression of female melon fly, <i><scp>Z</scp>eugodacus cucurbitae</i> , with cueâ€lure and fipronil bait stations through horizontal insecticide transfer. Entomologia Experimentalis Et Applicata, 2018, 166, 94-101.	1.4	6
7	Oviposition Preferences and Behavior of Wild-Caught and Laboratory-Reared Coconut Rhinoceros Beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), in Relation to Substrate Particle Size. Insects, 2018, 9, 141.	2.2	7
8	Roadside Survey of Ants on Oahu, Hawaii. Insects, 2018, 9, 21.	2.2	3
9	Termite Species Distribution and Flight Periods on Oahu, Hawaii. Insects, 2017, 8, 58.	2.2	14
10	Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides. Insects, 2016, 7, 28.	2.2	3
11	Pickleworm (Diaphania nitidalis Cramer) Neonate Feeding Preferences and the Implications for a Push-Pull Management System. Insects, 2016, 7, 32.	2.2	3
12	Reducing Insecticide Use in Broad-Acre Grains Production: An Australian Study. PLoS ONE, 2014, 9, e89119.	2.5	33
13	Can spinosad-resistant Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) be managed with spinosad and predatory mites (Acari)?. Crop Protection, 2012, 42, 281-288.	2.1	2
14	Use of spinosad and predatory mites for the management of <i>Frankliniella occidentalis</i> in low tunnelâ€grown strawberry. Entomologia Experimentalis Et Applicata, 2012, 142, 258-270.	1.4	12
15	Bridal Creeper (<i>Asparagus asparagoides</i>)–Invaded Sites with Elevated Levels of Available Soil Nutrients: Barrier to Restoration?. Invasive Plant Science and Management, 2011, 4, 212-222.	1.1	4
16	Effect of spinosad and predatory mites on control of Frankliniella occidentalis in three strawberry cultivars. Entomologia Experimentalis Et Applicata, 2011, 138, 154-161.	1.4	12
17	Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry. Crop Protection, 2011, 30, 468-475.	2.1	13
18	Temperatureâ€dependant development of <i>Nasonia vitripennis</i> on five forensically important carrion fly species. Entomologia Experimentalis Et Applicata, 2010, 135, 37-47.	1.4	22

#	Article	IF	CITATIONS
19	Variation in Preference and Performance of Frankliniella occidentalis (Thysanoptera: Thripidae) on Three Strawberry Cultivars. Journal of Economic Entomology, 2010, 103, 1744-1753.	1.8	15
20	The Roles of Predators, Competitors, and Secondary Salinization in Structuring Mosquito (Diptera:) Tj ETQq0 0 0 Environmental Entomology, 2010, 39, 798-810.	rgBT /Ove 1.4	rlock 10 Tf 50 20
21	Dryland Salinity and the Ecology of Ross River Virus: The Ecological Underpinnings of the Potential for Transmission. Vector-Borne and Zoonotic Diseases, 2009, 9, 611-622.	1.5	24
22	Colonization of Ephemeral Water Bodies in the Wheatbelt of Western Australia by Assemblages of Mosquitoes (Diptera: Culicidae): Role of Environmental Factors, Habitat, and Disturbance. Environmental Entomology, 2009, 38, 1585-1594.	1.4	17
23	Salinity tolerance of <i>Aedes camptorhynchus</i> (Diptera: Culicidae) from two regions in southwestern Australia. Australian Journal of Entomology, 2009, 48, 293-299.	1.1	17
24	Host location and behavioural response patterns of the parasitoid, <i>Tachinaephagus zealandicus </i> Ashmead (Hymenoptera: Encyrtidae), to host and hostâ€habitat odours. Ecological Entomology, 2009, 34, 204-213.	2.2	16
25	Hymenopteran Parasitoids of Forensic Importance: Host Associations, Seasonality, and Prevalence of Parasitoids of Carrion Flies in Western Australia. Journal of Medical Entomology, 2009, 46, 1210-1219.	1.8	37
26	Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management. Australian Journal of Experimental Agriculture, 2008, 48, 1494.	1.0	30
27	LABORATORY DETERMINATION OF EFFICACY OF A SANTALUM SPICATUM EXTRACT FOR MOSQUITO CONTROL. Journal of the American Mosquito Control Association, 2007, 23, 304-311.	0.7	6
28	Nontarget effects of a weed biological control agent on a native plant in Northern Australia. Biological Control, 2007, 42, 25-33.	3.0	17