Elisa Magnanelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578466/publications.pdf

Version: 2024-02-01

		1163117	1058476	
17	189	8	14	
papers	citations	h-index	g-index	
17	17	17	163	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Dynamic modeling of municipal solid waste incineration. Energy, 2020, 209, 118426.	8.8	40
2	Machine learning based modelling for lower heating value prediction of municipal solid waste. Fuel, 2021, 283, 118906.	6.4	32
3	Scenarios for carbon capture integration in a waste-to-energy plant. Energy, 2021, 227, 120407.	8.8	19
4	Performance analysis of heat and energy recovery ventilators using exergy analysis and nonequilibrium thermodynamics. Energy and Buildings, 2018, 170, 195-205.	6.7	14
5	Entropy Production Minimization as Design Principle for Membrane Systems: Comparing Equipartition Results to Numerical Optima. Industrial & Engineering Chemistry Research, 2017, 56, 4856-4866.	3.7	13
6	Exergy-based performance indicators for industrial practice. International Journal of Energy Research, 2018, 42, 3989-4007.	4.5	13
7	Enhancing the understanding of heat and mass transport through a cellulose acetate membrane for CO2 separation. Journal of Membrane Science, 2016, 513, 129-139.	8.2	10
8	Extending the nonequilibrium square-gradient model with temperature-dependent influence parameters. Physical Review E, 2014, 90, 032402.	2.1	8
9	The Nasal Geometry of the Reindeer Gives Energy-Efficient Respiration. Journal of Non-Equilibrium Thermodynamics, 2017, 42, .	4.2	8
10	Energy efficient design of membrane processes by use of entropy production minimization. Computers and Chemical Engineering, 2018, 117, 105-116.	3.8	8
11	Nature-inspired geometrical design of a chemical reactor. Chemical Engineering Research and Design, 2019, 152, 20-29.	5.6	8
12	Energy efficiency of respiration in mature and newborn reindeer. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 509-520.	1.5	6
13	Operational guidelines for emissions control using cross-correlation analysis of waste-to-energy process data. Energy, 2021, 220, 119733.	8.8	6
14	Efficiency in the process industry: Three thermodynamic tools for better resource use. Trends in Food Science and Technology, 2020, 104, 84-90.	15.1	4
15	Non-equilibrium thermodynamics as a tool to compute temperature at the catalyst surface. Physical Chemistry Chemical Physics, 2019, 21, 15195-15205.	2.8	O
16	Characterizing the Dynamic Behaviour of a WtE Plant through Start-up Data. Computer Aided Chemical Engineering, 2020, 48, 1555-1560.	0.5	0
17	HaptiChem: Haptic and Visual Support in Interactions with the Microscopic World. Lecture Notes in Computer Science, 2014, , 72-82.	1.3	0