Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Highly Effective Catalyst of Sm-MnO _{<i>x</i>} for the NH ₃ -SCR of NO _{<i>x</i>} at Low Temperature: Promotional Role of Sm and Its Catalytic Performance. ACS Catalysis, 2015, 5, 5973-5983.	11.2	457
2	Promoting Effects of In ₂ O ₃ on Co ₃ O ₄ for CO Oxidation: Tuning O ₂ Activation and CO Adsorption Strength Simultaneously. ACS Catalysis, 2014, 4, 4143-4152.	11.2	250
3	Ru/CeO ₂ Catalyst with Optimized CeO ₂ Support Morphology and Surface Facets for Propane Combustion. Environmental Science & Technology, 2019, 53, 5349-5358.	10.0	228
4	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	13.7	217
5	Low-Temperature Methane Combustion over Pd/H-ZSM-5: Active Pd Sites with Specific Electronic Properties Modulated by Acidic Sites of H-ZSM-5. ACS Catalysis, 2016, 6, 8127-8139.	11.2	212
6	Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 221, 652-663.	20.2	204
7	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	12.8	168
8	Total Oxidation of Propane over a Ru/CeO ₂ Catalyst at Low Temperature. Environmental Science & Technology, 2018, 52, 9531-9541.	10.0	165
9	Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Applied Catalysis B: Environmental, 2018, 225, 110-120.	20.2	149
10	Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Applied Catalysis B: Environmental, 2014, 146, 43-49.	20.2	146
11	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4494-4498.	13.8	129
12	ldentification of Active Area as Active Center for CO Oxidation over Single Au Atom Catalyst. ACS Catalysis, 2020, 10, 6094-6101.	11.2	106
13	Activity and stability of Co 3 O 4 -based catalysts for soot oxidation: The enhanced effect of Bi 2 O 3 on activation and transfer of oxygen. Applied Catalysis B: Environmental, 2017, 209, 33-44.	20.2	103
14	The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO ₂ . Catalysis Science and Technology, 2018, 8, 2567-2577.	4.1	103
15	A Facile Way To Improve Pt Atom Efficiency for CO Oxidation at Low Temperature: Modification by Transition Metal Oxides. ACS Catalysis, 2019, 9, 6177-6187.	11.2	99
16	Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Applied Catalysis B: Environmental, 2020, 266, 118631.	20.2	99
17	Significant Improvement of Catalytic Performance for Chlorinated Volatile Organic Compound Oxidation over RuO <i>_x</i> Supported on Acid-Etched Co ₃ O ₄ . Environmental Science & Technology, 2021, 55, 10734-10743.	10.0	97
18	NixAl1O2-Î′ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Applied Catalysis B: Environmental, 2021, 291, 120074.	20.2	93

LI WANG

#	Article	IF	CITATIONS
19	CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Applied Catalysis B: Environmental, 2021, 291, 120122.	20.2	88
20	Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity. Applied Catalysis B: Environmental, 2021, 282, 119577.	20.2	85
21	The effects of Bi2O3 on the CO oxidation over Co3O4. Catalysis Today, 2011, 175, 610-614.	4.4	83
22	An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A: General, 2016, 523, 97-106.	4.3	81
23	Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion. Applied Catalysis B: Environmental, 2018, 239, 373-382.	20.2	76
24	Titania–Samarium–Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2020, 54, 2530-2538.	10.0	75
25	Ultralow-temperature CO oxidation on an In ₂ O ₃ –Co ₃ O ₄ catalyst: a strategy to tune CO adsorption strength and oxygen activation simultaneously. Chemical Communications, 2014, 50, 6835-6838.	4.1	73
26	The effects of the Pd chemical state on the activity of Pd/Al ₂ O ₃ catalysts in CO oxidation. Catalysis Science and Technology, 2014, 4, 3973-3980.	4.1	73
27	Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285, 119827.	20.2	72
28	A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NO x with ammonia: Effect of the calcination temperature. Journal of Molecular Catalysis A, 2016, 420, 272-281.	4.8	66
29	Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO ₂ Catalysts. Environmental Science & Technology, 2022, 56, 9661-9671.	10.0	65
30	An efficient Sn Mn1-O composite oxide catalyst for catalytic combustion of vinyl chloride emissions. Applied Catalysis B: Environmental, 2019, 255, 117748.	20.2	64
31	The role of potassium in K/Co3O4 for soot combustion under loose contact. Catalysis Today, 2011, 175, 100-105.	4.4	63
32	The existing states of potassium species in K-doped Co ₃ O ₄ catalysts and their influence on the activities for NO and soot oxidation. Catalysis Science and Technology, 2017, 7, 4710-4719.	4.1	52
33	Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chemical Engineering Journal, 2021, 418, 129398.	12.7	40
34	Catalytic combustion of methane over Pd/SnO 2 catalysts. Chinese Journal of Catalysis, 2017, 38, 1322-1329.	14.0	38
35	Superior catalytic activity of Pd-based catalysts upon tuning the structure of the ceria-zirconia support for methane combustion. Chemical Engineering Journal, 2021, 416, 129150.	12.7	36
36	Soot combustion over Ag catalysts supported on shape-controlled CeO2. Catalysis Today, 2021, 376, 9-18.	4.4	35

LI WANG

#	Article	IF	CITATIONS
37	Effect of surface properties of activated carbon on CO oxidation over supported Wacker-type catalysts. Catalysis Today, 2010, 153, 184-188.	4.4	33
38	The stability and deactivation of Pd–Cu–Clx/Al2O3 catalyst for low temperature CO oxidation: an effect of moisture. Catalysis Science and Technology, 2011, 1, 1202.	4.1	32
39	A highly-efficient La–MnO _x catalyst for propane combustion: the promotional role of La and the effect of the preparation method. Catalysis Science and Technology, 2016, 6, 8222-8233.	4.1	31
40	CO catalytic oxidation over Pd/CeO2 with different chemical states of Pd. Rare Metals, 2020, 39, 800-805.	7.1	30
41	Catalytic performance of Co–Fe mixed oxide for NH ₃ -SCR reaction and the promotional role of cobalt. RSC Advances, 2016, 6, 66169-66179.	3.6	29
42	Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Applied Surface Science, 2021, 556, 149766.	6.1	26
43	Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3. Rare Metals, 2019, 38, 292-298.	7.1	23
44	A novel method for the synthesis of CexZr1-xO2 solid solution with high purity of κappa phase and excellent reactive activity. Catalysis Today, 2019, 327, 262-270.	4.4	20
45	Ambient Temperature NO Adsorber Derived from Pyrolysis of Co-MOF(ZIF-67). ACS Omega, 2019, 4, 9542-9551.	3.5	18
46	Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al ₂ O ₃ for Dry Reforming of CH ₄ : Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Interfaces, 2021, 13, 58605-58618.	8.0	18
47	Understanding the role of redox properties and NO adsorption over MnFeO _{<i>x</i>} for NH ₃ -SCR. Catalysis Science and Technology, 2022, 12, 2030-2041.	4.1	16
48	Elimination of NO pollutant in semi-enclosed spaces over sodium-promoted cobalt oxyhydroxide (CoOOH) by oxidation and adsorption mechanism. Applied Catalysis B: Environmental, 2020, 279, 119404.	20.2	15
49	Catalytic combustion of vinyl chloride emissions over Co3O4 catalysts with different crystallite sizes. Rare Metals, 2021, 40, 817-827.	7.1	15
50	Comparisons on thermal and water-resistance of Ru and Pd supported on cobalt-doped alumina nanosheets for catalytic combustion of propane. Applied Catalysis A: General, 2021, 628, 118398.	4.3	14
51	Low-temperature catalytic combustion of trichloroethylene over MnO -CeO2 mixed oxide catalysts. Journal of Rare Earths, 2023, 41, 523-530.	4.8	14
52	Ambient Temperature Formaldehyde Oxidation on the Pt/Na-ZSM-5 Catalyst: Tuning Adsorption Capacity and the Pt Chemical State. Industrial & Engineering Chemistry Research, 2021, 60, 7132-7144.	3.7	13
53	Robust nanosheet-assembled Al ₂ O ₃ -supported Ni catalysts for the dry reforming of methane: the effect of nickel content on the catalytic performance and carbon formation. New Journal of Chemistry, 2021, 45, 21750-21762.	2.8	12
54	The effects of the presence of metal Fe in the CO oxidation over Ir/FeOx catalyst. Catalysis Communications, 2015, 61, 83-87.	3.3	10

LI WANG

#	Article	IF	CITATIONS
55	Stability of Pd-Cu-Cl x /Al 2 O 3 catalyst for CO oxidation. Chinese Journal of Catalysis, 2018, 39, 1560-1567.	14.0	10
56	Sm-MnO catalysts for low-temperature selective catalytic reduction of NO with NH3: Effect of precipitation agent. Journal of Rare Earths, 2022, 40, 1199-1210.	4.8	10
57	CH2Cl2 catalytic oxidation over Ce-Ti-Zr mixed oxide catalysts. Applied Catalysis A: General, 2022, 629, 118420.	4.3	9
58	Sb-Containing Metal Oxide Catalysts for the Selective Catalytic Reduction of NOx with NH3. Catalysts, 2020, 10, 1154.	3.5	8
59	Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Metals, 2022, 41, 3060-3068.	7.1	7
60	Understanding the role of tungsten on Pt/CeO2 for vinyl chloride catalytic combustion. Journal of Rare Earths, 2022, 40, 1462-1470.	4.8	6
61	Regulating the Spatial Distribution of Ru Nanoparticles on CeO ₂ Support for Enhanced Propane Oxidation. ACS Applied Nano Materials, 2022, 5, 3937-3945.	5.0	6
62	The experiment and modeling of supported Wacker-type catalyst for CO oxidation at high relative humidity. Catalysis Today, 2015, 242, 315-321.	4.4	4
63	Insight into the Surface-Tuned Activity and Cl ₂ /HCl Selectivity in the Catalytic Oxidation of Vinyl Chloride over Co ₃ O ₄ (110) versus (001): A DFT Study. Journal of Physical Chemistry C, 2021, 125, 16975-16983.	3.1	4
64	Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts, 2022, 12, 471.	3.5	4
65	A new strategy to improve catalytic activity for chlorinated volatile organic compounds oxidation over cobalt oxide: Introduction of strontium carbonate. Journal of the Indian Chemical Society, 2021, 98, 100116.	2.8	3
66	Mechanochemical NaCl–Mediated Synthesis of Porous Cu _{<i>x</i>} Mo _{1–<i>x</i>} O _{<i>y</i>} Catalyst for Knoevenagel Condensation. Industrial & Engineering Chemistry Research, 2021, 60, 17778-17785.	3.7	3
67	Electronic Metal-Support Interactions Between CuxO and ZnO for CuxO/ZnO Catalysts With Enhanced CO Oxidation Activity. Frontiers in Chemistry, 2022, 10, .	3.6	3