
Haoyuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3578052/publications.pdf Version: 2024-02-01

Ηλογιιλη Γι

#	Article	IF	CITATIONS
1	Highâ€Efficiency Fluorescent Organic Lightâ€Emitting Devices Using Sensitizing Hosts with a Small Singlet–Triplet Exchange Energy. Advanced Materials, 2014, 26, 5050-5055.	21.0	496
2	Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. Journal of the American Chemical Society, 2017, 139, 16310-16318.	13.7	121
3	Towards High Efficiency and Low Rollâ€Off Orange Electrophosphorescent Devices by Fine Tuning Singlet and Triplet Energies of Bipolar Hosts Based on Indolocarbazole/1, 3, 5â€Triazine Hybrids. Advanced Functional Materials, 2014, 24, 3551-3561.	14.9	117
4	Universal Trap Effect in Carrier Transport of Disordered Organic Semiconductors: Transition from Shallow Trapping to Deep Trapping. Journal of Physical Chemistry C, 2014, 118, 10651-10660.	3.1	74
5	Highâ€Performance Fluorescent Organic Lightâ€Emitting Diodes Utilizing an Asymmetric Anthracene Derivative as an Electronâ€Transporting Material. Advanced Materials, 2018, 30, e1707590.	21.0	68
6	Molecular Understanding of Fullerene – Electron Donor Interactions in Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1601370.	19.5	66
7	Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1367-1374.	13.7	58
8	Hydrolytic Stability of Boronate Ester‣inked Covalent Organic Frameworks. Advanced Theory and Simulations, 2018, 1, 1700015.	2.8	57
9	Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD. Npj Flexible Electronics, 2017, 1, .	10.7	49
10	Charge Transport in Mixed Organic Disorder Semiconductors: Trapping, Scattering, and Effective Energetic Disorder. Journal of Physical Chemistry C, 2012, 116, 19748-19754.	3.1	44
11	Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. ACS Central Science, 2019, 5, 1892-1899.	11.3	44
12	Exciplex System with Increased Donor–Acceptor Distance as the Sensitizing Host for Conventional Fluorescent OLEDs with High Efficiency and Extremely Low Roll-Off. ACS Applied Materials & Interfaces, 2019, 11, 22595-22602.	8.0	40
13	Efficient Organic Light-Emitting Transistors Based on High-Quality Ambipolar Single Crystals. ACS Applied Materials & Interfaces, 2020, 12, 43976-43983.	8.0	36
14	Charge Transport in Amorphous Organic Semiconductors: Effects of Disorder, Carrier Density, Traps, and Scatters. Israel Journal of Chemistry, 2014, 54, 918-926.	2.3	33
15	Influence of Molecular Packing on Intramolecular Reorganization Energy: A Case Study of Small Molecules. Journal of Physical Chemistry C, 2014, 118, 14848-14852.	3.1	31
16	Impact of Structural Defects on the Elastic Properties of Two-Dimensional Covalent Organic Frameworks (2D COFs) under Tensile Stress. Chemistry of Materials, 2021, 33, 4529-4540.	6.7	30
17	Relationship between Mobilities from Time-of-Flight and Dark-Injection Space-Charge-Limited Current Measurements for Organic Semiconductors: A Monte Carlo Study. Journal of Physical Chemistry C, 2014, 118, 6052-6058.	3.1	26
18	Assessment of the Factors Influencing Chargeâ€Carrier Mobility Measurements in Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1803096.	14.9	26

Haoyuan Li

#	Article	IF	CITATIONS
19	Electric Field inside a Hole-Only Device and Insights into Space-Charge-Limited Current Measurement for Organic Semiconductors. Journal of Physical Chemistry C, 2014, 118, 9990-9995.	3.1	25
20	Organic Fieldâ€Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer‣ized Devices. Advanced Functional Materials, 2017, 27, 1605715.	14.9	24
21	Kinetic Monte Carlo Modeling of Charge Carriers in Organic Electronic Devices: Suppression of the Self-Interaction Error. Journal of Physical Chemistry Letters, 2017, 8, 2507-2512.	4.6	17
22	Developing molecular-level models for organic field-effect transistors. National Science Review, 2021, 8, nwaa167.	9.5	17
23	Study of the Hole and Electron Transport in Amorphous 9,10-Di-(2′-naphthyl)anthracene: The First-Principles Approach. Journal of Physical Chemistry C, 2013, 117, 16336-16342.	3.1	15
24	Quasi-One-Dimensional Charge Transport Can Lead to Nonlinear Current Characteristics in Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2018, 9, 6550-6555.	4.6	15
25	Large Out-of-Plane Deformations of Two-Dimensional Covalent Organic Framework (COF) Sheets. Journal of Physical Chemistry Letters, 2018, 9, 4215-4220.	4.6	15
26	Transient space-charge-perturbed currents in organic materials: A Monte Carlo study. Organic Electronics, 2014, 15, 524-530.	2.6	14
27	Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process. Physical Chemistry Chemical Physics, 2015, 17, 24092-24097.	2.8	14
28	Understanding charge transport in donor/acceptor blends from large-scale device simulations based on experimental film morphologies. Energy and Environmental Science, 2020, 13, 601-615.	30.8	14
29	Mobility increase in poly [2-methoxy-5-(2′-ethylhexyloxy)-1, 4-phenylenevinylene] blended with graphene. Applied Physics Letters, 2011, 98, 223302.	3.3	12
30	Experimental and theoretical study of the charge transport property of 4,4′-N,N′-dicarbazole-biphenyl. Science China Chemistry, 2012, 55, 2428-2432.	8.2	12
31	Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 3265-3273.	6.7	12
32	Multi-scale calculation of the electric properties of organic-based devices from the molecular structure. Organic Electronics, 2016, 33, 164-171.	2.6	11
33	Percolative charge transport in a co-evaporated organic molecular mixture. Organic Electronics, 2013, 14, 3312-3317.	2.6	8
34	Mechanisms of Charge Transport in Transition Metal Oxide Doped Organic Semiconductors. Journal of Physical Chemistry C, 2014, 118, 29636-29642.	3.1	8
35	Modeling of Actualâ€&ize Organic Electronic Devices from Efficient Molecularâ€&cale Simulations. Advanced Functional Materials, 2018, 28, 1801460.	14.9	8
36	Lithium-ion distribution and motion in two-dimensional covalent organic frameworks: the example of TAPB-PDA COF. Journal of Materials Chemistry C, 2022, 10, 13834-13843.	5.5	8

#	Article	CITATIONS
37	Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects. , 2021, 3, 398-405.	6
38	Transient space-charge-perturbed currents of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine and N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine in diode structures. Applied Physໝ Letters, 2014, 104, .	4
39	Bipolar charge transport property of N,N′-dicarbazolyl-1,4-dimethene-benzene: A study of the short range order model. Science Bulletin, 2013, 58, 79-83.	3