Rui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3577116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Molecular Phylogenetics and Evolution, 2019, 135, 12-21.	2.7	123
2	Disruption of the petal identity gene <i>APETALA3-3</i> is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5074-5079.	7.1	88
3	Flexibility in the structure of spiral flowers and its underlying mechanisms. Nature Plants, 2016, 2, 15188.	9.3	88
4	Developmental mechanisms involved in the diversification of flowers. Nature Plants, 2019, 5, 917-923.	9.3	46
5	Identification of the Key Regulatory Genes Involved in Elaborate Petal Development and Specialized Character Formation in <i>Nigelladamascena</i> (Ranunculaceae). Plant Cell, 2020, 32, 3095-3112.	6.6	27
6	The making of elaborate petals in <i>Nigella</i> through developmental repatterning. New Phytologist, 2019, 223, 385-396.	7.3	21
7	A role for the Auxin Response Factors <i>ARF6</i> and <i>ARF8</i> homologs in petal spur elongation and nectary maturation in <i>Aquilegia</i> . New Phytologist, 2020, 227, 1392-1405.	7.3	21
8	Prevalent Exon-Intron Structural Changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-Box Gene Subfamilies Provide New Insights into Their Evolution. Frontiers in Plant Science, 2016, 7, 598.	3.6	19
9	The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals. Nature Communications, 2020, 11, 1777.	12.8	18
10	Interactions among proteins of floral MADSâ€box genes in <i>Nuphar pumila</i> (Nymphaeaceae) and the most recent common ancestor of extant angiosperms help understand the underlying mechanisms of the origin of the flower. Journal of Systematics and Evolution, 2015, 53, 285-296.	3.1	17
11	Identification of the target genes of AqAPETALA3â€3 (AqAP3â€3) in <i>Aquilegia coerulea</i> (Ranunculaceae) helps understand the molecular bases of the conserved and nonconserved features of petals. New Phytologist, 2020, 227, 1235-1248.	7.3	7