Francisco J Teran

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3576582/francisco-j-teran-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,190 27 46 g-index

72 2,497 4.9 4.72 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
66	Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. <i>Advanced Materials</i> , 2021 , 33, e2100077	24	11
65	Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications. <i>Nanoscale</i> , 2021 , 13, 14552-14571	7.7	7
64	Whither Magnetic Hyperthermia? A Tentative Roadmap. <i>Materials</i> , 2021 , 14,	3.5	39
63	Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications. <i>Nanoscale</i> , 2021 , 13, 13665-13680	7.7	4
62	Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 41957-41971	9.5	31
61	Instrumentation for Magnetic Hyperthermia 2019 , 111-138		3
60	Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. <i>Chemistry of Materials</i> , 2019 , 31, 5450-5463	9.6	24
59	Iron-Based Core-Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. <i>ACS Applied Materials & Drug Delivery and Photothermal and Magnetic ACS Applied Materials & Drug Delivery and Photothermal and Magnetic Therapy. ACS Applied Materials & Drug Delivery and Photothermal and Magnetic Therapy. <i>ACS Applied Materials & Drug Delivery and Photothermal and Magnetic Drug Delivery and Photothermal Drug Delivery and Photothermal Drug Delivery and Photothermal Drug Delivery Drug Drug Delivery Drug Delivery</i></i>	9.5	19
58	Dynamical Magnetic Response of Iron Oxide Nanoparticles Inside Live Cells. ACS Nano, 2018 , 12, 2741-7	275627	85
57	Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. <i>Advanced Functional Materials</i> , 2018 , 28, 1704434	15.6	46
56	Fe Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. <i>Nano Letters</i> , 2018 , 18, 6856-686	66 ^{11.5}	40
55	Current Outlook and Perspectives on Nanoparticle-Mediated Magnetic Hyperthermia 2018, 197-245		31
54	Unraveling viscosity effects on the hysteresis losses of magnetic nanocubes. <i>Nanoscale</i> , 2017 , 9, 5094-5	51 ,0,1	53
53	Elucidation of the Physicochemical Properties Ruling the Colloidal Stability of Iron Oxide Nanoparticles under Physiological Conditions. <i>ChemNanoMat</i> , 2017 , 3, 183-189	3.5	15
52	Emergence of the Stoner-Wohlfarth astroid in thin films at dynamic regime. <i>Scientific Reports</i> , 2017 , 7, 13474	4.9	7
51	Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki-67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer. <i>International Journal of Nanomedicine</i> , 2017 , 12, 1009-1018	7-3	37
50	Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. <i>Scientific Reports</i> , 2016 , 6, 35786	4.9	47

(2010-2016)

49	Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 10954-63	3.6	94
48	In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures. <i>ACS Applied Materials & Discrete Applied & Discrete </i>	9.5	47
47	Note: Vectorial-magneto optical Kerr effect technique combined with variable temperature and full angular range all in a single setup. <i>Review of Scientific Instruments</i> , 2015 , 86, 046109	1.7	10
46	BSA-coated magnetic nanoparticles for improved therapeutic properties. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 6239-6247	7.3	34
45	Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	42
44	Fundamentals and advances in magnetic hyperthermia. <i>Applied Physics Reviews</i> , 2015 , 2, 041302	17.3	469
43	Safety assessment of chronic oral exposure to iron oxide nanoparticles. <i>Nanotechnology</i> , 2015 , 26, 205	19,14	36
42	A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 15698-15706	3.8	115
41	Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 19985-19994	3.8	71
40	High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. <i>Pharmaceutical Research</i> , 2014 , 31, 3274-88	4.5	100
39	Preparation of glycopolymer-coated magnetite nanoparticles for hyperthermia treatment. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 5087-5096	2.5	29
38	Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21065		126
37	Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. <i>Applied Physics Letters</i> , 2012 , 101, 062413	3.4	38
36	Tailoring magnetic anisotropy in epitaxial half metallic La0.7Sr0.3MnO3 thin films. <i>Journal of Applied Physics</i> , 2011 , 110, 013919	2.5	33
35	Substrate-induced magnetic anisotropy in La0.7Sr0.3MnO3epitaxial thin films grown onto (110) and (11 8) SrTiO3substrates. <i>Journal of Physics: Conference Series</i> , 2011 , 303, 012058	0.3	1
34	Role of anisotropy configuration in exchange-biased systems. <i>Journal of Applied Physics</i> , 2011 , 109, 07D	0739	21
33	Magnetization reversal in half metallic La0.7Sr0.3MnO3 films grown onto vicinal surfaces. <i>Journal of Applied Physics</i> , 2011 , 109, 07B107	2.5	12
32	Quantum Hall states under conditions of vanishing Zeeman energy. <i>Physical Review B</i> , 2010 , 82,	3.3	4

31	Enhancement of the spin gap in fully occupied two-dimensional Landau levels. <i>Physical Review B</i> , 2010 , 82,	3.3	7
30	pH responsive surfaces with nanoscale topography. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 2982-2	.9 9 05	23
29	Highly asymmetric magnetic behavior in exchange biased systems induced by noncollinear field cooling. <i>Applied Physics Letters</i> , 2009 , 95, 122508	3.4	50
28	Investigation of interband optical transitions by near-resonant magneto-photoluminescence in InAs/GaAs quantum dots. <i>European Physical Journal B</i> , 2009 , 67, 51-56	1.2	5
27	Carrier injection effects on exciton dynamics in GaAs/AlAs resonant-tunneling diodes. <i>Europhysics Letters</i> , 2009 , 85, 67010	1.6	3
26	Dynamics of the localized spins interacting with two-dimensional electron gas: Coexistence of mixed and pure modes. <i>Physical Review B</i> , 2008 , 78,	3.3	19
25	Electron spin relaxation in very diluted CdMnTe quantum wells. <i>Superlattices and Microstructures</i> , 2008 , 43, 427-430	2.8	6
24	High-pressure and magneto-optical studies of Cr-related defects in the lithium-rich LiNbO3:Cr,Mg crystal. <i>Physical Review B</i> , 2007 , 76,	3.3	7
23	Evidence for excitonic polarons in InAs©aAs quantum dots. <i>Physical Review B</i> , 2006 , 73,	3.3	36
22	Magneto-optical spectroscopy of (Ga,Mn)N epilayers. <i>Physical Review B</i> , 2006 , 74,	3.3	26
21	Optical properties of Cd1¼MnxTe quantum wells across the Mott transition: An interband spectroscopy study. <i>Physical Review B</i> , 2006 , 73,	3.3	15
20	Evidence for excitonic polarons in InAs/GaAs quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2006 , 3, 3881-3884		1
19	Trion formation in narrow GaAs quantum well structures. <i>Physical Review B</i> , 2005 , 71,	3.3	18
18	ELECTRONIC SPINS AND LOCALIZED MAGNETIC MOMENTS IN DILUTE MAGNETIC SEMICONDUCTOR QUANTUM WELLS. <i>International Journal of Modern Physics B</i> , 2004 , 18, 3727-3734	1.1	
17	Light-emitting diodes based on GaMnAs/GaAs heterostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 21, 1002-1006	3	1
16	Coupling of Mn2+ spins with a 2DEG in quantum Hall regime. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 17, 335-341	3	12
15	Collective character of spin excitations in a system of Mn2+ spins coupled to a two-dimensional electron gas. <i>Physical Review Letters</i> , 2003 , 91, 077201	7.4	34
14	Investigation of radiative recombination from Mn-related states in Ga1\(\mathbb{\text{M}}\)MnxAs. <i>Applied Physics Letters</i> , 2003 , 83, 866-868	3.4	5

LIST OF PUBLICATIONS

13	Resistively detected EPR of Mn2+ ions coupled to the 2DEG in the quantum Hall regime. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 356-360	3	3	
12	Band-gap renormalization and photoluminescence from an interacting two-dimensional electron gas in a magnetic field. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 12, 495-498	3	6	
11	Effective spin diffusion across hugely lattice mismatched heterointerfaces. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 547-551	3	2	
10	Trions as a probe of spin injection through IIIVI magnetic/non-magnetic heterointerface. <i>Thin Solid Films</i> , 2002 , 412, 30-33	2.2	1	
9	Pauli paramagnetism and Landau level crossing in a modulation doped CdMnTe/CdMgTe quantum well. <i>Physical Review Letters</i> , 2002 , 88, 186803	7.4	29	
8	Polarization of magnetopolaritons in a semiconductor microcavity. <i>Springer Proceedings in Physics</i> , 2001 , 671-672	0.2		
7	Magneto-optical transitions involving a 2DEG confined in Cd(Mn)Te/CdMgTe quantum wells. <i>Springer Proceedings in Physics</i> , 2001 , 723-724	0.2		
6	IIIVI quantum structures with tunable electron -factor. <i>Journal of Crystal Growth</i> , 2000 , 214-215, 378-38	6 1.6	19	
5	Two-dimensional electron gas coupled to Mn2+ ions: a magneto-optical study of CdMnTe/CdMgTe MDQWs. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 6, 775-778	3		
4	Magnetooptical Properties of Graded Quantum Well Structures Made of Diluted Magnetic Semiconductors 2000 , 237-246		1	
3	g-factor dependence of the evolution of magneto-optical spectra with the density of quasi-two-dimensional electrons in Cd1MmxTe/Cd1MmgyTe heterostructures. <i>Physical Review B</i> , 1999 , 59, R10437-R10440	3.3	50	
2	Magneto-optics of a two-dimensional electron gas confined in Cd1⊠MnxTe quantum wells. <i>Physica B: Condensed Matter</i> , 1998 , 256-258, 577-581	2.8	12	
1	Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation. <i>Nanoscale Advances</i> ,	5.1	4	