Dirk Kerzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3576534/publications.pdf

Version: 2024-02-01

		201385	189595
109	3,101	27	50
papers	citations	h-index	g-index
111	111	111	1939
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Perceptual basis of bimanual coordination. Nature, 2001, 414, 69-73.	13.7	573
2	Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 2000, 40, 3703-3715.	0.7	131
3	Attentional capture during visual search is attenuated by target predictability: Evidence from the <scp>N</scp> 2pc, <scp>P</scp> d, and topographic segmentation. Psychophysiology, 2013, 50, 422-430.	1.2	112
4	Neuronal Processing Delays Are Compensated in the Sensorimotor Branch of the Visual System. Current Biology, 2003, 13, 1975-1978.	1.8	104
5	Comparing mislocalizations with moving stimuli: The Fr \tilde{A} \P hlich effect, the flash-lag, and representational momentum. Visual Cognition, 2002, 9, 120-138.	0.9	94
6	Amygdala Activation for Eye Contact Despite Complete Cortical Blindness. Journal of Neuroscience, 2013, 33, 10483-10489.	1.7	90
7	Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 2003, 43, 2623-2635.	0.7	77
8	Improved visual sensitivity during smooth pursuit eye movements. Nature Neuroscience, 2008, 11 , $1211-1216$.	7.1	72
9	Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition, 2003, 88, 109-131.	1.1	71
10	Cognitive load in simultaneous interpreting: Model meets data. International Journal of Bilingualism, 2012, 16, 228-242.	0.6	67
11	Memory for the position of stationary objects: disentangling foveal bias and memory averaging. Vision Research, 2002, 42, 159-167.	0.7	58
12	Conflicts during response selection affect response programming: Reactions toward the source of stimulation Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 816-834.	0.7	58
13	A simon effect with stationary moving stimuli Journal of Experimental Psychology: Human Perception and Performance, 2004, 30, 39-55.	0.7	51
14	The trial context determines adjusted localization of stimuli: reconciling the Fröhlich and onset repulsion effects. Vision Research, 2004, 44, 2201-2206.	0.7	50
15	The distractor positivity (<scp>Pd</scp>) signals lowering of attentional priority: Evidence from eventâ€related potentials and individual differences. Psychophysiology, 2014, 51, 685-696.	1.2	49
16	Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 2016, 121, 74-83.	1.1	47
17	A matter of design: No representational momentum without predictability. Visual Cognition, 2002, 9, 66-80.	0.9	45
18	Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 2011, 208, 621-631.	0.7	44

#	Article	IF	Citations
19	Time course of the Simon effect in pointing movements for horizontal, vertical, and acoustic stimuli: Evidence for a common mechanism. Acta Psychologica, 2008, 129, 420-428.	0.7	42
20	Salientâ€butâ€irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search. Psychophysiology, 2017, 54, 1826-1838.	1.2	40
21	Effects of attention shifts to stationary objects during steady-state smooth pursuit eye movements. Vision Research, 2008, 48, 958-969.	0.7	39
22	Capture by Context Elements, Not Attentional Suppression of Distractors, Explains the PD with Small Search Displays. Journal of Cognitive Neuroscience, 2020, 32, 1170-1183.	1.1	38
23	Comment and Reply Why eye movements and perceptual factors have to be controlled in studies on "representational momentum― Psychonomic Bulletin and Review, 2006, 13, 166-173.	1.4	36
24	The locus of "memory displacement―is at least partially perceptual: Effects of velocity, expectation, friction, memory averaging, and weight. Perception & Psychophysics, 2002, 64, 680-692.	2.3	34
25	Distractor rejection in visual search breaks down with more than a single distractor feature Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 648-657.	0.7	31
26	Spatial distortions and processing latencies in the onset repulsion and $Fr\tilde{A}\P$ hlich effects. Vision Research, 2004, 44, 577-590.	0.7	29
27	Salient stimuli capture attention and action. Attention, Perception, and Psychophysics, 2013, 75, 1633-1643.	0.7	29
28	Electrophysiological evidence for attentional capture by irrelevant angry facial expressions. Biological Psychology, 2016, 120, 69-80.	1.1	29
29	Attentional guidance by relative features: Behavioral and electrophysiological evidence. Psychophysiology, 2016, 53, 1074-1083.	1.2	29
30	Visually guided movements to color targets. Experimental Brain Research, 2006, 175, 110-126.	0.7	28
31	A Simon effect induced by induced motion and location: Evidence for a direct linkage of cognitive and motor maps. Perception & Psychophysics, 2001, 63, 862-874.	2.3	26
32	Effects of Structured Nontarget Stimuli on Saccadic Latency. Journal of Neurophysiology, 2005, 93, 3214-3223.	0.9	26
33	Dynamics of attention during the initiation of smooth pursuit eye movements. Journal of Vision, 2008, 8, 3-3.	0.1	26
34	Affective states leak into movement execution: Automatic avoidance of threatening stimuli in fear of spider is visible in reach trajectories. Cognition and Emotion, 2012, 26, 1176-1188.	1.2	26
35	Target-nontarget similarity decreases search efficiency and increases stimulus-driven control in visual search. Attention, Perception, and Psychophysics, 2017, 79, 2037-2043.	0.7	26
36	Influence of target and distractor contrast on the remote distractor effect. Vision Research, 2008, 48, 2805-2816.	0.7	24

#	Article	IF	CITATIONS
37	Motion-induced illusory displacement reexamined: differences between perception and action?. Experimental Brain Research, 2005, 162, 191-201.	0.7	23
38	Is this object balanced or unbalanced? Judgments are on the safe side Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 529-538.	0.7	23
39	Visual short-term memory during smooth pursuit eye movements Journal of Experimental Psychology: Human Perception and Performance, 2005, 31, 354-372.	0.7	22
40	The allocation of resources in visual working memory and multiple attentional templates Journal of Experimental Psychology: Human Perception and Performance, 2019, 45, 645-658.	0.7	22
41	Different localization of motion onset with pointing and relative judgements. Experimental Brain Research, 2002, 145, 340-350.	0.7	21
42	Centripetal force draws the eyes, not memory of the target, toward the center Journal of Experimental Psychology: Learning Memory and Cognition, 2003, 29, 458-466.	0.7	21
43	The precision of attentional selection is far worse than the precision of the underlying memory representation. Cognition, 2019, 186, 20-31.	1.1	21
44	Mislocalization of flashes during smooth pursuit hardly depends on the lighting conditions. Vision Research, 2006, 46, 1145-1154.	0.7	20
45	Representational Momentum Beyond Internalized Physics. Current Directions in Psychological Science, 2005, 14, 180-184.	2.8	19
46	Involuntary cueing effects on accuracy measures: Stimulus and task dependence. Journal of Vision, 2009, 9, 16-16.	0.1	19
47	Effects of stimulus material on the Fröhlich illusion. Vision Research, 2002, 42, 181-189.	0.7	18
48	Effects of Saccades and Response Type on the Simon Effect: If you Look at the Stimulus, the Simon Effect May be Gone. Quarterly Journal of Experimental Psychology, 2010, 63, 2172-2189.	0.6	18
49	Coordinated flexibility: How initial gaze position modulates eye-hand coordination and reaching Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 891-901.	0.7	18
50	The spatio-temporal tuning of the mechanisms in the control of saccadic eye movements. Vision Research, 2006, 46, 3886-3897.	0.7	17
51	Inhibition of Steady-State Smooth Pursuit and Catch-Up Saccades by Abrupt Visual and Auditory Onsets. Journal of Neurophysiology, 2010, 104, 2573-2585.	0.9	17
52	Large effects of peripheral cues on appearance correlate with low precision. Journal of Vision, 2010, 10, 26-26.	0.1	16
53	Predictability of spatial and non-spatial target properties improves perception in the pre-saccadic interval. Vision Research, 2013, 91, 93-101.	0.7	16
54	Electrophysiological evidence for attentional capture by irrelevant angry facial expressions: Naturalistic faces. Neuroscience Letters, 2017, 637, 44-49.	1.0	16

#	Article	IF	CITATIONS
55	Evidence for an attentional component in saccadic inhibition of return. Experimental Brain Research, 2009, 195, 531-540.	0.7	15
56	Allocation of resources in working memory: Theoretical and empirical implications for visual search. Psychonomic Bulletin and Review, 2021, 28, 1093-1111.	1.4	15
57	Smooth pursuit eye movements and perception share target selection, but only some central resources. Behavioural Brain Research, 2009, 201, 66-73.	1.2	14
58	Visual Flicker in the Gamma-Band Range Does Not Draw Attention. Journal of Neurophysiology, 2010, 103, 1606-1613.	0.9	12
59	Attentional constraints on target selection for smooth pursuit eye movements. Vision Research, 2011, 51, 13-20.	0.7	12
60	Perceptual grouping allows for attention to cover noncontiguous locations and suppress capture from nearby locations Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1362-1370.	0.7	12
61	Visual selective attention and the control of tracking eye movements: a critical review. Journal of Neurophysiology, 2021, 125, 1552-1576.	0.9	12
62	Optimal task-sets override attentional capture by rare cues Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 681-692.	0.7	12
63	Attentional capture by context cues, not inhibition of cue singletons, explains same location costs Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 610-628.	0.7	12
64	Perceptual asynchronies between color and motion at the onset of motion and along the motion trajectory. Perception & Psychophysics, 2008, 70, 1092-1103.	2.3	11
65	Involuntary attention with uncertainty: Peripheral cues improve perception of masked letters, but may impair perception of low-contrast letters. Journal of Vision, 2010, 10, 12-12.	0.1	11
66	Dissociation between Goal-directed and Discrete Response Localization in a Patient with Bilateral Cortical Blindness. Journal of Cognitive Neuroscience, 2013, 25, 1769-1775.	1,1	11
67	Contingent capture effects in temporal order judgments Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 995-1006.	0.7	11
68	Attentional suppression is delayed for threatening distractors. Visual Cognition, 2019, 27, 185-198.	0.9	11
69	Attentional load modulates mislocalization of moving stimuli, but does not eliminate the error. Psychonomic Bulletin and Review, 2004, 11, 848-853.	1.4	10
70	Localizing the onset of moving stimuli by pointing or relative judgment: Variations in the size of the Fröhlich effect. Vision Research, 2008, 48, 611-617.	0.7	10
71	Saliency Changes Appearance. PLoS ONE, 2011, 6, e28292.	1.1	10
72	Approach and avoidance movements are unaffected by cognitive conflict: A comparison of the Simon effect and stimulus–response compatibility. Psychonomic Bulletin and Review, 2012, 19, 456-461.	1.4	10

#	Article	IF	CITATIONS
73	Face processing is enhanced in the left and upper visual hemi-fields. Visual Cognition, 2017, 25, 749-761.	0.9	10
74	Time-to-passage judgments on circular trajectories are based on relative optical acceleration. Perception & Psychophysics, 2001, 63, 1153-1170.	2.3	9
75	Gaze-cueing requires intact face processing – Insights from acquired prosopagnosia. Brain and Cognition, 2017, 113, 125-132.	0.8	9
76	Stronger interference from distractors in the right hemifield during visual search. Laterality, 2018, 23, 152-165.	0.5	9
77	Object features reinstated from episodic memory guide attentional selection. Cognition, 2020, 197, 104158.	1.1	9
78	Direct evidence for the optimal tuning of attention Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 716-728.	0.7	9
79	Comparison of flashed and moving probes in the flash-lag effect: Evidence for misbinding of abrupt and continuous changes. Vision Research, 2008, 48, 1584-1591.	0.7	8
80	Ocular tracking responses to background motion gated by feature-based attention. Journal of Neurophysiology, 2014, 112, 1074-1081.	0.9	8
81	Task Demands Modulate Effects of Threatening Faces on Early Perceptual Encoding. Frontiers in Psychology, 2019, 10, 2400.	1.1	8
82	Early spatial attention deployment toward and away from aggressive voices. Social Cognitive and Affective Neuroscience, 2019, 14, 73-80.	1.5	8
83	Attribute amnesia can be modulated by foveal presentation and the pre-allocation of endogenous spatial attention. Attention, Perception, and Psychophysics, 2020, 82, 2302-2314.	0.7	8
84	Involuntary cueing effects during smooth pursuit: facilitation and inhibition of return in oculocentric coordinates. Experimental Brain Research, 2009, 192, 25-31.	0.7	7
85	Nogo Stimuli Do Not Receive More Attentional Suppression or Response Inhibition than Neutral Stimuli: Evidence from the N2pc, PD, and N2 Components in a Spatial Cueing Paradigm. Frontiers in Psychology, 2016, 7, 630.	1.1	7
86	Suppression of salient stimuli inside the focus of attention. Biological Psychology, 2018, 139, 106-114.	1.1	7
87	Gaze direction affects visuo-spatial short-term memory. Brain and Cognition, 2014, 90, 63-68.	0.8	6
88	The effects of saliency on manual reach trajectories and reach target selection. Vision Research, 2015, 113, 179-187.	0.7	6
89	Placeholder objects shape spatial attention effects before eye movements. Journal of Vision, 2018, 18, 1.	0.1	6
90	Contributions of visible persistence and perceptual set to the flash-lag effect: Focusing on flash onset abolishes the illusion. Vision Research, 2009, 49, 2983-2991.	0.7	5

#	Article	IF	Citations
91	Effects of stimulus contrast and temporal delays in saccadic distraction. Vision Research, 2011, 51, 1163-1172.	0.7	5
92	Statistical regularities cause attentional suppression with target-matching distractors. Attention, Perception, and Psychophysics, 2021, 83, 270-282.	0.7	5
93	Attentional Templates Are Sharpened through Differential Signal Enhancement, Not Differential Allocation of Attention. Journal of Cognitive Neuroscience, 2021, 33, 594-610.	1.1	5
94	Do we need attentional suppression?. Visual Cognition, 2021, 29, 580-582.	0.9	5
95	New templates interfere with existing templates depending on their respective priority in visual working memory Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 1313-1327.	0.7	5
96	Statistical learning in visual search reflects distractor rarity, not only attentional suppression. Psychonomic Bulletin and Review, 2022, 29, 1890-1897.	1.4	5
97	Judging Whether it is Aesthetic: Does Equilibrium Compensate for the Lack of Symmetry?. I-Perception, 2013, 4, 57-77.	0.8	4
98	A novel dissociation between representational momentum and representational gravity through response modality. Psychological Research, 2019, 83, 1223-1236.	1.0	4
99	Capacity limitations in template-guided multiple color search. Psychonomic Bulletin and Review, 2022, 29, 901-909.	1.4	3
100	The effect of gaze direction on the different components of visuo-spatial short-term memory. Laterality, 2015, 20, 738-754.	0.5	2
101	Which kind of attention is captured by cues with the relative target colour?. Visual Cognition, 2017, 25, 703-714.	0.9	2
102	Attentional guidance by irrelevant features depends on their successful encoding into working memory Journal of Experimental Psychology: Human Perception and Performance, 2021, 47, 1182-1191.	0.7	2
103	Guidance of visual search by negative attentional templates depends on task demands Journal of Experimental Psychology: Human Perception and Performance, 2022, 48, 653-664.	0.7	2
104	Strategies for written additions in adults. Journal of Cognitive Psychology, 2015, 27, 979-991.	0.4	1
105	Looking up improves performance in verbal tasks. Laterality, 2020, 25, 198-214.	0.5	0
106	Working memory resources protect attentional templates during visual search: Converging evidence from event-related potentials. Journal of Vision, 2021, 21, 1857.	0.1	0
107	The precision of attentional selection is far worse than the precision of the underlying memory representation. Journal of Vision, 2019, 19, 311.	0.1	0
108	Competing unconscious reference-frames shape conscious motion perception. Journal of Vision, 2019, 19, 150c.	0.1	0

#	Article	IF	CITATIONS
109	New attentional templates interfere with the retrieval of existing attentional templates. Journal of Vision, 2020, 20, 361.	0.1	O